論文の概要: Why Go Full? Elevating Federated Learning Through Partial Network Updates
- arxiv url: http://arxiv.org/abs/2410.11559v2
- Date: Wed, 16 Oct 2024 06:35:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 09:43:14.100070
- Title: Why Go Full? Elevating Federated Learning Through Partial Network Updates
- Title(参考訳): なぜ完全になるのか? 部分的なネットワーク更新を通じてフェデレーション学習を高める
- Authors: Haolin Wang, Xuefeng Liu, Jianwei Niu, Wenkai Guo, Shaojie Tang,
- Abstract要約: フェデレートラーニング(Federated Learning)は、ユーザのデータプライバシを保護するために設計された分散機械学習パラダイムである。
我々はFedPartメソッドを導入し、各通信ラウンドにおいて、モデル更新を単一のレイヤまたはいくつかのレイヤに制限する。
その結果,FedPart法はコンバージェンス速度と精度の点で従来のフルネットワーク更新手法をはるかに上回っていることがわかった。
- 参考スコア(独自算出の注目度): 13.22707992683864
- License:
- Abstract: Federated learning is a distributed machine learning paradigm designed to protect user data privacy, which has been successfully implemented across various scenarios. In traditional federated learning, the entire parameter set of local models is updated and averaged in each training round. Although this full network update method maximizes knowledge acquisition and sharing for each model layer, it prevents the layers of the global model from cooperating effectively to complete the tasks of each client, a challenge we refer to as layer mismatch. This mismatch problem recurs after every parameter averaging, consequently slowing down model convergence and degrading overall performance. To address the layer mismatch issue, we introduce the FedPart method, which restricts model updates to either a single layer or a few layers during each communication round. Furthermore, to maintain the efficiency of knowledge acquisition and sharing, we develop several strategies to select trainable layers in each round, including sequential updating and multi-round cycle training. Through both theoretical analysis and experiments, our findings demonstrate that the FedPart method significantly surpasses conventional full network update strategies in terms of convergence speed and accuracy, while also reducing communication and computational overheads.
- Abstract(参考訳): Federated Learningは、ユーザデータのプライバシを保護するために設計された分散機械学習パラダイムで、さまざまなシナリオでうまく実装されている。
従来のフェデレーション学習では、各トレーニングラウンドでローカルモデルのパラメータセット全体が更新され、平均化されます。
この完全なネットワーク更新手法は,各モデルレイヤの知識獲得と共有を最大化するが,グローバルモデルのレイヤが効率的に協調して各クライアントのタスクを完了するのを防ぐ。
このミスマッチ問題は、各パラメータの平均化後に再帰し、結果としてモデルの収束を遅くし、全体的なパフォーマンスを低下させる。
層間ミスマッチ問題に対処するため,各通信ラウンド中にモデル更新を1層または数層に制限するFedPart法を導入する。
さらに,知識獲得と共有の効率を維持するために,逐次更新や複数ラウンドのサイクルトレーニングを含む,各ラウンドでトレーニング可能なレイヤを選択するためのいくつかの戦略を開発する。
理論的解析と実験により,FedPart法はコンバージェンス速度と精度の点で従来の全ネットワーク更新戦略をはるかに上回り,通信や計算オーバーヘッドの低減を図っている。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Towards Optimal Customized Architecture for Heterogeneous Federated
Learning with Contrastive Cloud-Edge Model Decoupling [20.593232086762665]
フェデレートラーニングは、有望な分散学習パラダイムとして、中央データ収集を必要とせずに、複数のネットワークエッジクライアントにわたるグローバルモデルの協調トレーニングを可能にする。
我々はFedCMDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
私たちのモチベーションは、パーソナライズされた頭として異なるニューラルネットワーク層を選択するパフォーマンスを深く調査することで、現在の研究でパーソナライズされた頭として最後の層を厳格に割り当てることが常に最適であるとは限らない、ということです。
論文 参考訳(メタデータ) (2024-03-04T05:10:28Z) - Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment [4.95475852994362]
フェデレートラーニング(Federated Learning)は、リモートクライアント間で機械学習モデルをトレーニングする手法である。
我々は、共通の目的のために最適化されたNモデルを学ぶために、典型的な連合学習環境を再構築する。
この技術は、最先端のアプローチと比較して、様々なデータパーティションにおける競合的な結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-11-08T16:42:14Z) - Submodel Partitioning in Hierarchical Federated Learning: Algorithm
Design and Convergence Analysis [15.311309249848739]
階層学習(FL)は、従来の「星のトポロジー」アーキテクチャに基づく連合学習(FL)よりも有望なスケーラビリティを実証している。
本稿では,IoT(Internet of Things)の独立したサブトレーニングを提案する。
HISTの背景にある主要なアイデアは、モデル計算のグローバルバージョンであり、グローバルモデルを各ラウンドの非結合サブモデルに分割し、異なるセルに分散する。
論文 参考訳(メタデータ) (2023-10-27T04:42:59Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning(FL)は、クライアントがデータを交換することなくグローバルモデルを協調的にトレーニングできる、画期的な分散学習パラダイムとして登場した。
FeDEQは,高効率なパーソナライズのために,コンパクトなグローバルデータ表現を利用するために,深い平衡学習とコンセンサス最適化を取り入れた新しいFLフレームワークである。
FeDEQは,訓練中の通信サイズを最大4倍,メモリフットプリントを1.5倍に削減しつつ,最先端のパーソナライズされたFL法の性能に適合することを示した。
論文 参考訳(メタデータ) (2023-09-27T13:48:12Z) - Toward efficient resource utilization at edge nodes in federated learning [0.6990493129893112]
フェデレートされた学習により、エッジノードは、データを共有することなく、グローバルモデルの構築に協力的に貢献することができる。
計算リソースの制約とネットワーク通信は、ディープラーニングアプリケーションに典型的なより大きなモデルサイズにとって、深刻なボトルネックになる可能性がある。
デバイス上での資源利用を減らすため,転送学習にインスパイアされたFL戦略を提案し,評価する。
論文 参考訳(メタデータ) (2023-09-19T07:04:50Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
フェデレーション学習は、分散データからインテリジェントモデルを学ぶために広く使用されている。
フェデレートラーニングでは、クライアントはモデルラーニングの各イテレーションでローカルモデルの更新を伝える必要がある。
本稿では,知識蒸留に基づくコミュニケーション効率のよいフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-30T15:39:54Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
オールオンス量子化ネットワークを効率的にトレーニングするための新しい共同知識伝達アプローチを開発しています。
具体的には、低精度の学生に知識を伝達するための高精度のエンクォータを選択するための適応的選択戦略を提案する。
知識を効果的に伝達するために,低精度の学生ネットワークのブロックを高精度の教師ネットワークのブロックにランダムに置き換える動的ブロックスワッピング法を開発した。
論文 参考訳(メタデータ) (2021-03-02T03:09:03Z) - Adaptive Quantization of Model Updates for Communication-Efficient
Federated Learning [75.45968495410047]
クライアントノードと中央集約サーバ間のモデル更新の通信は、連合学習において大きなボトルネックとなる。
グラディエント量子化(Gradient Quantization)は、各モデル更新間の通信に必要なビット数を削減する効果的な方法である。
通信効率と低エラーフロアを実現することを目的としたAdaFLと呼ばれる適応量子化戦略を提案する。
論文 参考訳(メタデータ) (2021-02-08T19:14:21Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。