Fast Local Neural Regression for Low-Cost, Path Traced Lambertian Global Illumination
- URL: http://arxiv.org/abs/2410.11625v1
- Date: Tue, 15 Oct 2024 14:14:06 GMT
- Title: Fast Local Neural Regression for Low-Cost, Path Traced Lambertian Global Illumination
- Authors: Arturo Salmi, Szabolcs Cséfalvay, James Imber,
- Abstract summary: Real-time ray budgets remain stubbornly limited at a handful of samples per pixel (spp) on commodity hardware.
We propose incorporating a neural network into a computationally-efficient local linear model-based denoiser.
We demonstrate faithful single-frame reconstruction of global illumination for Lambertian scenes at very low sample counts.
- Score: 0.0
- License:
- Abstract: Despite recent advances in hardware acceleration of ray tracing, real-time ray budgets remain stubbornly limited at a handful of samples per pixel (spp) on commodity hardware, placing the onus on denoising algorithms to achieve high visual quality for path traced global illumination. Neural network-based solutions give excellent result quality at the cost of increased execution time relative to hand-engineered methods, making them less suitable for deployment on resource-constrained systems. We therefore propose incorporating a neural network into a computationally-efficient local linear model-based denoiser, and demonstrate faithful single-frame reconstruction of global illumination for Lambertian scenes at very low sample counts (1spp) and for low computational cost. Other contributions include improving the quality and performance of local linear model-based denoising through a simplified mathematical treatment, and demonstration of the surprising usefulness of ambient occlusion as a guide channel. We also show how our technique is straightforwardly extensible to joint denoising and upsampling of path traced renders with reference to low-cost, rasterized guide channels.
Related papers
- Fast and Accurate Neural Rendering Using Semi-Gradients [2.977255700811213]
We propose a neural network-based framework for global illumination rendering.
We identify the cause of these issues as the bias and high variance present in the gradient estimates of the residual-based objective function.
arXiv Detail & Related papers (2024-10-14T04:30:38Z) - RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time
Path Tracing [1.534667887016089]
MonteCarlo path tracing is a powerful technique for realistic image synthesis but suffers from high levels of noise at low sample counts.
We propose a framework with end-to-end training of a sampling importance network, a latent space encoder network, and a denoiser network.
arXiv Detail & Related papers (2023-10-05T12:39:27Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
We propose a novel neural light field representation that is compact and directly predicts integrated radiance along rays.
Our method achieves state-of-the-art quality on dense forward-facing datasets such as the Stanford Light Field dataset.
arXiv Detail & Related papers (2021-12-02T18:59:51Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - Photon-Driven Neural Path Guiding [102.12596782286607]
We present a novel neural path guiding approach that can reconstruct high-quality sampling distributions for path guiding from a sparse set of samples.
We leverage photons traced from light sources as the input for sampling density reconstruction, which is highly effective for challenging scenes with strong global illumination.
Our approach achieves significantly better rendering results of testing scenes than previous state-of-the-art path guiding methods.
arXiv Detail & Related papers (2020-10-05T04:54:01Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
We present a scheme for fast environment light estimation from the RGBD appearance of individual objects and their local image areas.
With the estimated lighting, virtual objects can be rendered in AR scenarios with shading that is consistent to the real scene.
arXiv Detail & Related papers (2020-08-06T08:23:19Z) - Monocular Real-Time Volumetric Performance Capture [28.481131687883256]
We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video.
Our system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu)
We also introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples.
arXiv Detail & Related papers (2020-07-28T04:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.