ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices
- URL: http://arxiv.org/abs/2410.11650v1
- Date: Tue, 15 Oct 2024 14:38:14 GMT
- Title: ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices
- Authors: Xiang Liu, Yijun Song, Xia Li, Yifei Sun, Huiying Lan, Zemin Liu, Linshan Jiang, Jialin Li,
- Abstract summary: We propose a novel Vision Transformer splitting framework, ED-ViT, to execute complex models across multiple edge devices efficiently.
Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes.
We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices.
- Score: 13.533267828812455
- License:
- Abstract: Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.
Related papers
- LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiT is a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework.
We introduce key innovations to optimize generative performance for vision tasks.
The model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks.
arXiv Detail & Related papers (2024-11-18T12:05:27Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
We explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM)
Vision Transformer captures global information by splitting images into small pieces, but its high reference count and compute overhead limit deployment on mobile devices.
LLM has revolutionized natural language processing, but it also faces huge deployment challenges.
arXiv Detail & Related papers (2024-08-16T11:56:49Z) - OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
Federated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices.
We propose OnDev-LCT: Lightweight Convolutional Transformers for On-Device vision tasks with limited training data and resources.
arXiv Detail & Related papers (2024-01-22T02:17:36Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
We present a comparative analysis of various self-supervised Vision Transformers (ViTs)
Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning.
arXiv Detail & Related papers (2023-12-31T11:38:50Z) - Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design [84.34416126115732]
Scaling laws have been recently employed to derive compute-optimal model size (number of parameters) for a given compute duration.
We advance and refine such methods to infer compute-optimal model shapes, such as width and depth, and successfully implement this in vision transformers.
Our shape-optimized vision transformer, SoViT, achieves results competitive with models that exceed twice its size, despite being pre-trained with an equivalent amount of compute.
arXiv Detail & Related papers (2023-05-22T13:39:28Z) - GOHSP: A Unified Framework of Graph and Optimization-based Heterogeneous
Structured Pruning for Vision Transformer [76.2625311630021]
Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks.
To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency.
We propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models.
arXiv Detail & Related papers (2023-01-13T00:40:24Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.