Analyzing Local Representations of Self-supervised Vision Transformers
- URL: http://arxiv.org/abs/2401.00463v2
- Date: Thu, 21 Mar 2024 14:57:25 GMT
- Title: Analyzing Local Representations of Self-supervised Vision Transformers
- Authors: Ani Vanyan, Alvard Barseghyan, Hakob Tamazyan, Vahan Huroyan, Hrant Khachatrian, Martin Danelljan,
- Abstract summary: We present a comparative analysis of various self-supervised Vision Transformers (ViTs)
Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning.
- Score: 34.56680159632432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a comparative analysis of various self-supervised Vision Transformers (ViTs), focusing on their local representative power. Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning. We design evaluation framework to analyze the quality of local, i.e.\ patch-level, representations in the context of few-shot semantic segmentation, instance identification, object retrieval and tracking. We discover that contrastive learning based methods like DINO produce more universal patch representations that can be immediately applied for downstream tasks with no parameter tuning, compared to masked image modeling. The embeddings learned using the latter approach, e.g. in masked autoencoders, have high variance features that harm distance-based algorithms, such as k-NN, and do not contain useful information for most downstream tasks. Furthermore, we demonstrate that removing these high-variance features enhances k-NN for MAE, as well as for its recent extension Scale-MAE. Finally, we find an object instance retrieval setting where DINOv2, a model pretrained on two orders of magnitude more data, falls short of its less compute intensive counterpart DINO.
Related papers
- MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Contrastive Learning for Multi-Object Tracking with Transformers [79.61791059432558]
We show how DETR can be turned into a MOT model by employing an instance-level contrastive loss.
Our training scheme learns object appearances while preserving detection capabilities and with little overhead.
Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset.
arXiv Detail & Related papers (2023-11-14T10:07:52Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - Visual Transformer for Object Detection [0.0]
We consider the use of self-attention for discriminative visual tasks, object detection, as an alternative to convolutions.
Our model leads to consistent improvements in object detection on COCO across many different models and scales.
arXiv Detail & Related papers (2022-06-01T06:13:09Z) - Improving VAE-based Representation Learning [26.47244578124654]
We study what properties are required for good representations and how different VAE structure choices could affect the learned properties.
We show that by using a decoder that prefers to learn local features, the remaining global features can be well captured by the latent.
arXiv Detail & Related papers (2022-05-28T23:00:18Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks.
Our framework encodes the input image into a shared representation and makes predictions for each vision task using task-specific transformer-based decoder heads.
arXiv Detail & Related papers (2022-05-17T13:03:18Z) - Unsupervised Image Decomposition with Phase-Correlation Networks [28.502280038100167]
Phase-Correlation Decomposition Network (PCDNet) is a novel model that decomposes a scene into its object components.
In our experiments, we show how PCDNet outperforms state-of-the-art methods for unsupervised object discovery and segmentation.
arXiv Detail & Related papers (2021-10-07T13:57:33Z) - Mean Embeddings with Test-Time Data Augmentation for Ensembling of
Representations [8.336315962271396]
We look at the ensembling of representations and propose mean embeddings with test-time augmentation (MeTTA)
MeTTA significantly boosts the quality of linear evaluation on ImageNet for both supervised and self-supervised models.
We believe that spreading the success of ensembles to inference higher-quality representations is the important step that will open many new applications of ensembling.
arXiv Detail & Related papers (2021-06-15T10:49:46Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Scene Understanding for Autonomous Driving [0.0]
We study the behaviour of different configurations of RetinaNet, Faster R-CNN and Mask R-CNN presented in Detectron2.
We observe a significant improvement in performance after fine-tuning these models on the datasets of interest.
We run inference in unusual situations using out of context datasets, and present interesting results.
arXiv Detail & Related papers (2021-05-11T09:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.