Efficient Partitioning Vision Transformer on Edge Devices for Distributed Inference
- URL: http://arxiv.org/abs/2410.11650v2
- Date: Wed, 21 May 2025 03:20:50 GMT
- Title: Efficient Partitioning Vision Transformer on Edge Devices for Distributed Inference
- Authors: Xiang Liu, Yijun Song, Xia Li, Yifei Sun, Huiying Lan, Zemin Liu, Linshan Jiang, Jialin Li,
- Abstract summary: We propose a novel framework, ED-ViT, which is designed to efficiently split and execute complex Vision Transformers across multiple edge devices.<n>Our approach involves partitioning Vision Transformer models into several sub-models, while each dedicated to handling a specific subset of data classes.<n>We demonstrate that our method significantly cuts down inference latency on edge devices and achieves a reduction in model size by up to 28.9 times and 34.1 times, respectively.
- Score: 13.533267828812455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning models are increasingly utilized on resource-constrained edge devices for real-time data analytics. Recently, Vision Transformer and their variants have shown exceptional performance in various computer vision tasks. However, their substantial computational requirements and low inference latency create significant challenges for deploying such models on resource-constrained edge devices. To address this issue, we propose a novel framework, ED-ViT, which is designed to efficiently split and execute complex Vision Transformers across multiple edge devices. Our approach involves partitioning Vision Transformer models into several sub-models, while each dedicated to handling a specific subset of data classes. To further reduce computational overhead and inference latency, we introduce a class-wise pruning technique that decreases the size of each sub-model. Through extensive experiments conducted on five datasets using three model architectures and actual implementation on edge devices, we demonstrate that our method significantly cuts down inference latency on edge devices and achieves a reduction in model size by up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating metrics such as accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.
Related papers
- UniViTAR: Unified Vision Transformer with Native Resolution [37.63387029787732]
We introduce UniViTAR, a family of homogeneous vision foundation models tailored for unified visual modality and native resolution scenario.
A progressive training paradigm is introduced, which strategically combines two core mechanisms.
In parallel, a hybrid training framework further synergizes sigmoid-based contrastive loss with feature distillation from a frozen teacher model.
arXiv Detail & Related papers (2025-04-02T14:59:39Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiT is a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework.
We introduce key innovations to optimize generative performance for vision tasks.
The model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks.
arXiv Detail & Related papers (2024-11-18T12:05:27Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
We explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM)
Vision Transformer captures global information by splitting images into small pieces, but its high reference count and compute overhead limit deployment on mobile devices.
LLM has revolutionized natural language processing, but it also faces huge deployment challenges.
arXiv Detail & Related papers (2024-08-16T11:56:49Z) - Optimizing Vision Transformers with Data-Free Knowledge Transfer [8.323741354066474]
Vision transformers (ViTs) have excelled in various computer vision tasks due to their superior ability to capture long-distance dependencies.
We propose compressing large ViT models using Knowledge Distillation (KD), which is implemented data-free to circumvent limitations related to data availability.
arXiv Detail & Related papers (2024-08-12T07:03:35Z) - OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
Federated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices.
We propose OnDev-LCT: Lightweight Convolutional Transformers for On-Device vision tasks with limited training data and resources.
arXiv Detail & Related papers (2024-01-22T02:17:36Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
We present a comparative analysis of various self-supervised Vision Transformers (ViTs)
Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning.
arXiv Detail & Related papers (2023-12-31T11:38:50Z) - A survey on efficient vision transformers: algorithms, techniques, and
performance benchmarking [19.65897437342896]
Vision Transformer (ViT) architectures are becoming increasingly popular and widely employed to tackle computer vision applications.
This paper mathematically defines the strategies used to make Vision Transformer efficient, describes and discusses state-of-the-art methodologies, and analyzes their performances over different application scenarios.
arXiv Detail & Related papers (2023-09-05T08:21:16Z) - Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design [84.34416126115732]
Scaling laws have been recently employed to derive compute-optimal model size (number of parameters) for a given compute duration.
We advance and refine such methods to infer compute-optimal model shapes, such as width and depth, and successfully implement this in vision transformers.
Our shape-optimized vision transformer, SoViT, achieves results competitive with models that exceed twice its size, despite being pre-trained with an equivalent amount of compute.
arXiv Detail & Related papers (2023-05-22T13:39:28Z) - GOHSP: A Unified Framework of Graph and Optimization-based Heterogeneous
Structured Pruning for Vision Transformer [76.2625311630021]
Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks.
To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency.
We propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models.
arXiv Detail & Related papers (2023-01-13T00:40:24Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.