論文の概要: Visual Fixation-Based Retinal Prosthetic Simulation
- arxiv url: http://arxiv.org/abs/2410.11688v1
- Date: Tue, 15 Oct 2024 15:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:23.604239
- Title: Visual Fixation-Based Retinal Prosthetic Simulation
- Title(参考訳): 視覚的固定に基づく網膜補綴シミュレーション
- Authors: Yuli Wu, Do Dinh Tan Nguyen, Henning Konermann, Rüveyda Yilmaz, Peter Walter, Johannes Stegmaier,
- Abstract要約: 固定ベースのフレームワークは、実際の被験者の生理的データに基づく計算パラメータを用いて、87.72%の分類精度を達成する。
我々のアプローチは、網膜補綴学で利用可能な限られた解像度で、より意味論的に理解可能なパーセプションを作り出す可能性を示唆している。
- 参考スコア(独自算出の注目度): 1.0075717342698087
- License:
- Abstract: This study proposes a retinal prosthetic simulation framework driven by visual fixations, inspired by the saccade mechanism, and assesses performance improvements through end-to-end optimization in a classification task. Salient patches are predicted from input images using the self-attention map of a vision transformer to mimic visual fixations. These patches are then encoded by a trainable U-Net and simulated using the pulse2percept framework to predict visual percepts. By incorporating a learnable encoder, we aim to optimize the visual information transmitted to the retinal implant, addressing both the limited resolution of the electrode array and the distortion between the input stimuli and resulting phosphenes. The predicted percepts are evaluated using the self-supervised DINOv2 foundation model, with an optional learnable linear layer for classification accuracy. On a subset of the ImageNet validation set, the fixation-based framework achieves a classification accuracy of 87.72%, using computational parameters based on a real subject's physiological data, significantly outperforming the downsampling-based accuracy of 40.59% and approaching the healthy upper bound of 92.76%. Our approach shows promising potential for producing more semantically understandable percepts with the limited resolution available in retinal prosthetics.
- Abstract(参考訳): 本研究では,ササード機構に触発された視覚的固定により駆動される網膜補綴シミュレーションフレームワークを提案し,分類作業におけるエンドツーエンドの最適化による性能改善を評価する。
視覚変換器の自己アテンションマップを用いて、入力画像から正当パッチを予測し、視覚的固定を模倣する。
これらのパッチはトレーニング可能なU-Netによってエンコードされ、Pulse2perceptフレームワークを使って視覚的知覚を予測する。
学習可能なエンコーダを組み込んで網膜インプラントに送信される視覚情報を最適化し,電極アレイの解像度と入力刺激とフォスフェンの歪みの両方に対処することを目的とする。
予測パーセプションは自己教師付きDINOv2基礎モデルを用いて評価され、任意の学習可能な線形層を用いて分類精度を評価する。
ImageNet検証セットのサブセットでは、実際の被験者の生理的データに基づいて計算パラメータを使用して87.72%の分類精度を達成し、ダウンサンプリングベースの精度40.59%を著しく上回り、健康上の上限92.76%に近づいた。
我々のアプローチは、網膜補綴学で利用可能な限られた解像度で、より意味論的に理解可能なパーセプションを作り出す可能性を示唆している。
関連論文リスト
- PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks [30.701422594374456]
本稿では,任意の多面体出力集合のアンダー・アンド・オーバー近似を生成する事前抽象化のためのフレームワークを提案する。
提案手法を様々なタスクで評価し,高インプット次元画像分類タスクに対する効率とスケーラビリティの大幅な向上を示す。
論文 参考訳(メタデータ) (2024-08-17T17:24:47Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - ViTaL: An Advanced Framework for Automated Plant Disease Identification
in Leaf Images Using Vision Transformers and Linear Projection For Feature
Reduction [0.0]
本稿では,植物葉画像中の疾患の自動識別のための堅牢な枠組みを提案する。
このフレームワークには、いくつかの重要なステージが組み込まれており、疾患の認識精度が向上している。
本報告では, 病原葉を全方位でスキャンするハードウェア設計を提案する。
論文 参考訳(メタデータ) (2024-02-27T11:32:37Z) - Slicer Networks [8.43960865813102]
医用画像解析のための新しいアーキテクチャであるスライダネットワークを提案する。
スライダ・ネットワークは、スプレイティング・ブルーリング・スライシング・プロセスを通じて、機能マップを戦略的に洗練し、アップサンプルする。
異なる医療画像アプリケーションにわたる実験により、スライカーネットワークの精度と効率が向上したことが確認された。
論文 参考訳(メタデータ) (2024-01-18T09:50:26Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - A Deep Learning-based in silico Framework for Optimization on Retinal
Prosthetic Stimulation [3.870538485112487]
シリコン網膜インプラントモデルパルス2パーセプションによってシミュレーションされた知覚を最適化するニューラルネットワークベースのフレームワークを提案する。
パイプラインは、トレーニング可能なエンコーダ、トレーニング済み網膜インプラントモデル、トレーニング済み評価器から構成される。
論文 参考訳(メタデータ) (2023-02-07T16:32:05Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Prediction of progressive lens performance from neural network
simulations [62.997667081978825]
本研究の目的は,畳み込みニューラルネットワーク(CNN)に基づく視覚的視力(VA)予測の枠組みを提案することである。
提案する総合シミュレーションツールは主観的視覚性能の正確なモデルとして機能することが示されている。
論文 参考訳(メタデータ) (2021-03-19T14:51:02Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
計算シミュレーションは、バーチャルリアリティーにおけるそのようなスキルの訓練を容易にする。
インタラクティブな時間に任意のレンダリングやシミュレーションプロセスをバイパスするためにここに提案します。
我々は、専用のジェネレータアーキテクチャと入力供給方式を備えた生成的対向フレームワークを使用する。
論文 参考訳(メタデータ) (2021-01-20T21:58:19Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
緑内障は 世界でも 不可逆的な盲目の 主要な原因です 7000万人以上が 影響を受けています
The Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variable, we propose the RetiNerveNet。
論文 参考訳(メタデータ) (2020-10-15T03:09:08Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。