論文の概要: Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations
- arxiv url: http://arxiv.org/abs/2410.11719v1
- Date: Tue, 15 Oct 2024 15:50:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 13:03:12.549902
- Title: Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations
- Title(参考訳): クロスドメインレコメンデーションのための不均一グラフの適応コーディネータとプロンプト
- Authors: Hengyu Zhang, Chunxu Shen, Xiangguo Sun, Jie Tan, Yu Rong, Chengzhi Piao, Hong Cheng, Lingling Yi,
- Abstract要約: 我々は,マルチドメイングラフを結合構造に統合するフレームワークHAGOを開発した。
また、ユニバーサルなマルチドメイングラフ事前学習戦略も開発している。
提案手法は,マルチドメインレコメンデーションシナリオにおいて最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 31.05975545409408
- License:
- Abstract: In the online digital world, users frequently engage with diverse items across multiple domains (e.g., e-commerce platforms, streaming services, and social media networks), forming complex heterogeneous interaction graphs. Leveraging this multi-domain information can undoubtedly enhance the performance of recommendation systems by providing more comprehensive user insights and alleviating data sparsity in individual domains. However, integrating multi-domain knowledge for the cross-domain recommendation is very hard due to inherent disparities in user behavior and item characteristics and the risk of negative transfer, where irrelevant or conflicting information from the source domains adversely impacts the target domain's performance. To address these challenges, we offer HAGO, a novel framework with $\textbf{H}$eterogeneous $\textbf{A}$daptive $\textbf{G}$raph co$\textbf{O}$rdinators, which dynamically integrate multi-domain graphs into a cohesive structure by adaptively adjusting the connections between coordinators and multi-domain graph nodes, thereby enhancing beneficial inter-domain interactions while mitigating negative transfer effects. Additionally, we develop a universal multi-domain graph pre-training strategy alongside HAGO to collaboratively learn high-quality node representations across domains. To effectively transfer the learned multi-domain knowledge to the target domain, we design an effective graph prompting method, which incorporates pre-trained embeddings with learnable prompts for the recommendation task. Our framework is compatible with various graph-based models and pre-training techniques, demonstrating broad applicability and effectiveness. Further experimental results show that our solutions outperform state-of-the-art methods in multi-domain recommendation scenarios and highlight their potential for real-world applications.
- Abstract(参考訳): オンラインデジタルの世界では、ユーザーは複数のドメイン(eコマースプラットフォーム、ストリーミングサービス、ソーシャルメディアネットワークなど)にまたがる多様なアイテムと頻繁に関わり、複雑な異種相互作用グラフを形成する。
このマルチドメイン情報を活用することで、より包括的なユーザインサイトを提供することで、レコメンデーションシステムのパフォーマンスを確実に向上させることができる。
しかし、ユーザ行動とアイテム特性の相違や、ソースドメインからの無関係や矛盾した情報が対象ドメインのパフォーマンスに悪影響を及ぼす負の転送リスクのため、クロスドメインレコメンデーションのためのマルチドメイン知識の統合は非常に困難である。
これらの課題に対処するため、HAGO は $\textbf{H}$eterogeneous $\textbf{A}$daptive $\textbf{G}$raph co$\textbf{O}$rdinators という新しいフレームワークを提供する。
さらに、HAGOと共に、ドメイン間の高品質なノード表現を協調的に学習する汎用マルチドメイングラフ事前学習戦略を開発した。
学習したマルチドメイン知識を対象領域に効果的に転送するために,事前学習した埋め込みと学習可能なレコメンデーションを組み込んだ効果的なグラフプロンプト法を設計する。
我々のフレームワークは、様々なグラフベースのモデルや事前学習技術と互換性があり、幅広い適用性と有効性を示している。
さらに実験の結果,提案手法はマルチドメインレコメンデーションシナリオにおいて最先端の手法よりも優れており,実世界の応用の可能性を強調している。
関連論文リスト
- Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR(Cross-Domain Recommendation)は、レコメンデーションシステムにおけるデータ空間の問題に対する重要な解決策である。
我々は、グラフ畳み込み層を異なるドメイン間のモデル関係に適用する、エンドツーエンドのヘテロジニアスネットワークアーキテクチャであるHGDRを提案する。
実世界のデータセットとオンラインA/Bテストの実験により,提案したモデルがドメイン間の情報を効果的に伝達し,SOTAの性能に到達できることが証明された。
論文 参考訳(メタデータ) (2024-07-01T02:27:54Z) - FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling [15.159012729198619]
我々は,ハイパーグラフ信号デカップリングを用いた新しいクロスドメイン勧告フレームワークであるFedHCDRを提案する。
本研究では,ハイパーグラフ信号デカップリング(HSD)と呼ばれる手法を導入し,ユーザ特徴をドメイン排他的・ドメイン共有的特徴に分離する。
3つの実世界のシナリオで実施された大規模な実験は、FedHCDRが既存のベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-03-05T03:40:39Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
マルチドメインレコメンデータシステムは、クロスドメイン表現学習とポジティブな知識伝達の恩恵を受ける。
我々はMAGRecと呼ばれる手法のコンテキスト情報として時間的ドメイン内相互作用とドメイン間相互作用を用いる。
我々は、MAGRecが最先端の手法を一貫して上回る様々なシナリオで、公開データセットで実験を行う。
論文 参考訳(メタデータ) (2023-02-12T19:51:32Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
クロスドメインレコメンデーションは、複数のドメインからの知識を活用して、従来のレコメンデーションシステムにおけるデータの分散性とコールドスタートの問題を軽減することを目的としている。
このアプローチの一般的な実践は、各ドメインに個別にユーザ埋め込みをトレーニングし、それらを平易な方法で集約することです。
本稿では,2つのドメインの推薦性能を改善するために,新しいドメイン間推薦フレームワークであるCOASTを提案する。
論文 参考訳(メタデータ) (2023-01-26T23:54:41Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
本稿では,グラフ表現の伝播と逆学習を両立させる新しいAdrialversa Graph Representation Adaptation (AGRA) フレームワークを提案する。
提案するAGRAフレームワークは,従来の最先端手法よりも優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-08-03T13:27:24Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。