論文の概要: FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling
- arxiv url: http://arxiv.org/abs/2403.02630v4
- Date: Mon, 10 Jun 2024 14:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 01:03:43.086980
- Title: FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling
- Title(参考訳): FedHCDR:ハイパーグラフ信号デカップリングによるクロスドメイン勧告
- Authors: Hongyu Zhang, Dongyi Zheng, Lin Zhong, Xu Yang, Jiyuan Feng, Yunqing Feng, Qing Liao,
- Abstract要約: 我々は,ハイパーグラフ信号デカップリングを用いた新しいクロスドメイン勧告フレームワークであるFedHCDRを提案する。
本研究では,ハイパーグラフ信号デカップリング(HSD)と呼ばれる手法を導入し,ユーザ特徴をドメイン排他的・ドメイン共有的特徴に分離する。
3つの実世界のシナリオで実施された大規模な実験は、FedHCDRが既存のベースラインを著しく上回ることを示した。
- 参考スコア(独自算出の注目度): 15.159012729198619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
- Abstract(参考訳): 近年,複数のドメインのユーザデータを用いて推薦性能を向上させるクロスドメインレコメンデーション (CDR) が注目されている。
しかし、現在のCDRメソッドでは、ドメイン間でユーザデータを共有する必要があるため、GDPR(General Data Protection Regulation)に違反する。
その結果,Federated Cross-Domain Recommendation (FedCDR) には多くのアプローチが提案されている。
それでも、異なる領域にわたるデータの異質性は、フェデレート学習の全体的なパフォーマンスに必然的に影響を及ぼす。
本研究では,ハイパーグラフ信号デカップリングを用いた新しいFederated Cross-Domain RecommendationフレームワークであるFedHCDRを提案する。
具体的には、ドメイン間のデータ不均一性に対処するため、ハイパーグラフ信号デカップリング(HSD)と呼ばれるアプローチを導入し、ユーザ機能をドメイン排他的およびドメイン共有機能に分離する。
このアプローチでは、高パスと低パスのハイパーグラフフィルタを用いて、ドメイン排他的およびドメイン共有されたユーザ表現を分離する。
さらに、ユーザハイパーグラフを摂動させることにより、ドメイン共有ユーザ関係情報の学習を強化するために、ハイパーグラフコントラスト学習(HCL)モジュールを考案する。
3つの実世界のシナリオで実施された大規模な実験は、FedHCDRが既存のベースラインを著しく上回ることを示した。
関連論文リスト
- Graph Signal Processing for Cross-Domain Recommendation [37.87497277046321]
クロスドメインレコメンデーション(CDR)は、高密度ドメインからのユーザ-イテムインタラクションを活用して、データ空間とコールドスタート問題を緩和することにより、従来のレコメンデーションシステムを拡張する。
既存のCDR手法の多くは、重複するユーザの割合と、ソースドメインとターゲットドメインの固有の相違に敏感である。
GSPに基づく統一CDRフレームワークであるCGSPを提案し、ターゲットのみの類似性とソースブリッジの類似性を柔軟に組み合わせて構築されたクロスドメイン類似性グラフを利用する。
論文 参考訳(メタデータ) (2024-07-17T07:52:45Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR(Cross-Domain Recommendation)は、レコメンデーションシステムにおけるデータ空間の問題に対する重要な解決策である。
我々は、グラフ畳み込み層を異なるドメイン間のモデル関係に適用する、エンドツーエンドのヘテロジニアスネットワークアーキテクチャであるHGDRを提案する。
実世界のデータセットとオンラインA/Bテストの実験により,提案したモデルがドメイン間の情報を効果的に伝達し,SOTAの性能に到達できることが証明された。
論文 参考訳(メタデータ) (2024-07-01T02:27:54Z) - Hyperbolic Knowledge Transfer in Cross-Domain Recommendation System [28.003142450569452]
CDR(Cross-Domain Recommendation)は、異なるドメインからの知識を活用して、ターゲットのレコメンデーションドメインにおけるデータ空間の問題を軽減する。
現在のほとんどのメソッドはユークリッド空間のユーザやアイテムを表していますが、これは長い尾の分散データを扱うには理想的ではありません。
我々は,各ドメインのユニークな特徴を捉えるために,Hyperbolic Contrastive Learning (HCTS)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-25T05:35:02Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
ドメイン固有・クロスドメイン情報を抽出するために,ローカル・グローバル・アテンション・モジュールを用いた混在注意ネットワーク(MAN)を提案する。
2つの実世界のデータセットに対する実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2023-11-14T16:07:16Z) - FedDCSR: Federated Cross-domain Sequential Recommendation via
Disentangled Representation Learning [17.497009723665116]
本稿では,不整合表現学習を用いたクロスドメインシーケンシャルレコメンデーションフレームワークであるFedDCSRを提案する。
本稿では,SRD(Inter-Intra Domain Sequence Expression Disentanglement)と呼ばれるアプローチを導入し,ユーザシークエンス機能をドメイン共有およびドメイン排他的特徴に分解する。
さらに、ユーザシーケンス上でデータ拡張を行うことで、よりリッチなドメイン排他的特徴を学習するためのドメイン内コントラッシブインフォマックス(CIM)戦略を設計する。
論文 参考訳(メタデータ) (2023-09-15T14:23:20Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
マルチドメインレコメンデータシステムは、クロスドメイン表現学習とポジティブな知識伝達の恩恵を受ける。
我々はMAGRecと呼ばれる手法のコンテキスト情報として時間的ドメイン内相互作用とドメイン間相互作用を用いる。
我々は、MAGRecが最先端の手法を一貫して上回る様々なシナリオで、公開データセットで実験を行う。
論文 参考訳(メタデータ) (2023-02-12T19:51:32Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
クロスドメインレコメンデーションは、複数のドメインからの知識を活用して、従来のレコメンデーションシステムにおけるデータの分散性とコールドスタートの問題を軽減することを目的としている。
このアプローチの一般的な実践は、各ドメインに個別にユーザ埋め込みをトレーニングし、それらを平易な方法で集約することです。
本稿では,2つのドメインの推薦性能を改善するために,新しいドメイン間推薦フレームワークであるCOASTを提案する。
論文 参考訳(メタデータ) (2023-01-26T23:54:41Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。