Designing A Sustainable Marine Debris Clean-up Framework without Human Labels
- URL: http://arxiv.org/abs/2405.14815v2
- Date: Sat, 20 Jul 2024 19:06:27 GMT
- Title: Designing A Sustainable Marine Debris Clean-up Framework without Human Labels
- Authors: Raymond Wang, Nicholas R. Record, D. Whitney King, Tahiya Chowdhury,
- Abstract summary: Marine debris poses a significant ecological threat to birds, fish, and other animal life.
Traditional methods for assessing debris accumulation involve labor-intensive and costly manual surveys.
This study introduces a framework that utilizes aerial imagery captured by drones to conduct remote trash surveys.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Marine debris poses a significant ecological threat to birds, fish, and other animal life. Traditional methods for assessing debris accumulation involve labor-intensive and costly manual surveys. This study introduces a framework that utilizes aerial imagery captured by drones to conduct remote trash surveys. Leveraging computer vision techniques, our approach detects, classifies, and maps marine debris distributions. The framework uses Grounding DINO, a transformer-based zero-shot object detector, and CLIP, a vision-language model for zero-shot object classification, enabling the detection and classification of debris objects based on material type without the need for training labels. To mitigate over-counting due to different views of the same object, Scale-Invariant Feature Transform (SIFT) is employed for duplicate matching using local object features. Additionally, we have developed a user-friendly web application that facilitates end-to-end analysis of drone images, including object detection, classification, and visualization on a map to support cleanup efforts. Our method achieves competitive performance in detection (0.69 mean IoU) and classification (0.74 F1 score) across seven debris object classes without labeled data, comparable to state-of-the-art supervised methods. This framework has the potential to streamline automated trash sampling surveys, fostering efficient and sustainable community-led cleanup initiatives.
Related papers
- SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
We introduce an end-to-end architecture for object-centric grasping.
We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets.
arXiv Detail & Related papers (2024-01-18T12:41:41Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Long Range Object-Level Monocular Depth Estimation for UAVs [0.0]
We propose several novel extensions to state-of-the-art methods for monocular object detection from images at long range.
Firstly, we propose Sigmoid and ReLU-like encodings when modeling depth estimation as a regression task.
Secondly, we frame the depth estimation as a classification problem and introduce a Soft-Argmax function in the calculation of the training loss.
arXiv Detail & Related papers (2023-02-17T15:26:04Z) - Look Around and Learn: Self-Training Object Detection by Exploration [23.620820805804616]
An agent learns to explore the environment using a pre-trained off-the-shelf detector to locate objects and associate pseudo-labels.
By assuming that pseudo-labels for the same object must be consistent across different views, we learn the exploration policy Look Around to mine hard samples.
We implement a unified benchmark of the current state-of-the-art and compare our approach with pre-existing exploration policies and perception mechanisms.
arXiv Detail & Related papers (2023-02-07T16:26:45Z) - MUS-CDB: Mixed Uncertainty Sampling with Class Distribution Balancing
for Active Annotation in Aerial Object Detection [40.94800050576902]
Recent aerial object detection models rely on a large amount of labeled training data.
Active learning effectively reduces the data labeling cost by selectively querying the informative and representative unlabelled samples.
We propose a novel active learning method for cost-effective aerial object detection.
arXiv Detail & Related papers (2022-12-06T07:50:00Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
We build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
It is the first study to carry out zero-shot object detection in remote sensing imagery.
arXiv Detail & Related papers (2022-01-01T03:09:15Z) - Intelligent Railway Foreign Object Detection: A Semi-supervised
Convolutional Autoencoder Based Method [7.557470133155959]
We develop a semi-supervised convolutional autoencoder based framework that only requires railway track images without prior knowledge on the foreign objects in the training process.
The proposed framework is useful for data analytics via the train Internet-of-Things (IoT) systems.
arXiv Detail & Related papers (2021-08-05T07:32:23Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.