論文の概要: Time-Series Foundation Model for Value-at-Risk
- arxiv url: http://arxiv.org/abs/2410.11773v1
- Date: Tue, 15 Oct 2024 16:53:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:20.289910
- Title: Time-Series Foundation Model for Value-at-Risk
- Title(参考訳): バリュー・アット・リスクのための時系列基礎モデル
- Authors: Anubha Goel, Puneet Pasricha, Juho Kanniainen,
- Abstract要約: 広範囲で多様なデータセットで事前トレーニングされたファンデーションモデルは、比較的最小限のデータを持つゼロショット設定で使用できる。
TimesFMと呼ばれるGoogleのモデルの性能を従来のパラメトリックモデルと非パラメトリックモデルと比較する。
- 参考スコア(独自算出の注目度): 9.090616417812306
- License:
- Abstract: This study is the first to explore the application of a time-series foundation model for VaR estimation. Foundation models, pre-trained on vast and varied datasets, can be used in a zero-shot setting with relatively minimal data or further improved through finetuning. We compare the performance of Google's model, called TimesFM, against conventional parametric and non-parametric models, including GARCH, Generalized Autoregressive Score (GAS), and empirical quantile estimates, using daily returns from the S\&P 100 index and its constituents over 19 years. Our backtesting results indicate that, in terms of the actual-over-expected ratio, the fine-tuned TimesFM model consistently outperforms traditional methods. Regarding the quantile score loss function, it achieves performance comparable to the best econometric approach, the GAS model. Overall, the foundation model is either the best or among the top performers in forecasting VaR across the 0.01, 0.025, 0.05, and 0.1 VaR levels. We also found that fine-tuning significantly improves the results, and the model should not be used in zero-shot settings. Overall, foundation models can provide completely alternative approaches to traditional econometric methods, yet there are challenges to be tackled.
- Abstract(参考訳): 本研究では,VaR推定のための時系列基礎モデルの適用を初めて検討する。
広範囲で多様なデータセットで事前トレーニングされたファンデーションモデルは、比較的最小限のデータを持つゼロショット設定で使用したり、微調整によってさらに改善される。
GARCHやGAS(Generalized Autoregressive Score)といった従来のパラメトリックモデルや非パラメトリックモデルと比較して,GoogleのTimesFMと呼ばれるモデルの性能を比較した。
提案手法のバックテスト結果から,提案手法が従来手法より常に優れていたことが示唆された。
量子スコア損失関数については、最高の計量的アプローチであるGASモデルに匹敵する性能を達成する。
全体として、ファンデーションモデルは、VaRを0.01、0.025、0.05、0.1VaRレベルにわたって予測する最も優れたパフォーマーまたはトップパフォーマーのどちらかである。
また、微調整によって結果が大幅に改善され、ゼロショット設定ではモデルを使用すべきでないことも判明した。
全体として、ファンデーションモデルは従来の計量的手法に完全に代替的なアプローチを提供することができるが、取り組まなければならない課題がある。
関連論文リスト
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントに28のデータセットが含まれている。
また、約2300億のデータポイントを含む非学習事前学習データセットも提供します。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - GAS-Norm: Score-Driven Adaptive Normalization for Non-Stationary Time Series Forecasting in Deep Learning [1.642449952957482]
入力データの平均値と分散値の変化がディープニューラルネットワーク(DNN)の予測能力をいかに破壊するかを示す。
本稿では,GAS(Generalized Autoregressive Score)モデルとDeep Neural Networkを組み合わせた適応時系列正規化と予測の新しい手法であるGAS-Normを紹介する。
その結果,GAS-Normと組み合わせた場合,25項目中21項目の予測モデルでは,他の正規化手法と比較して精度が向上した。
論文 参考訳(メタデータ) (2024-10-04T21:26:12Z) - A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
MoEフレームワークは揮発性株のRNNと安定株の線形モデルを組み合わせて、ゲーティングネットワークを介して各モデルの重量を動的に調整する。
その結果,MoE法は様々な変動性プロファイルの予測精度を著しく向上させることがわかった。
MoEモデルの適応性は個々のモデルよりも優れており、Mean Squared Error(MSE)やMean Absolute Error(MAE)などのエラーを減らすことができる。
論文 参考訳(メタデータ) (2024-10-04T14:36:21Z) - Enhancing Microgrid Performance Prediction with Attention-based Deep Learning Models [0.0]
本研究の目的は、グリッド不安定性に寄与する電力振動を特徴とするマイクログリッドシステムの運用上の課題に対処することである。
畳み込みとGRU(Gated Recurrent Unit)の強みを活かした統合戦略が提案されている。
このフレームワークは、包括的な負荷予測を行うMulti-Layer Perceptron(MLP)モデルによって固定されている。
論文 参考訳(メタデータ) (2024-07-20T21:24:11Z) - No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance [68.18779562801762]
マルチモーダルモデルは、下流の"ゼロショット"のパフォーマンスを線形改善するために、指数関数的に多くのデータを必要とする。
本研究は,大規模な訓練パラダイムの下での「ゼロショット」一般化能力の鍵となる訓練データに対する指数関数的要求を明らかにする。
論文 参考訳(メタデータ) (2024-04-04T17:58:02Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - Dealing with zero-inflated data: achieving SOTA with a two-fold machine
learning approach [0.18846515534317262]
本稿では,ゼロインフレーションデータに適用した階層モデルを用いて,実世界の2つのユースケース(ホームアプライアンス分類と空港シャトル需要予測)について述べる。
提案手法は, 比較したSOTA手法の4倍のエネルギー効率が期待できる。
論文 参考訳(メタデータ) (2023-10-12T07:26:41Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - FreDo: Frequency Domain-based Long-Term Time Series Forecasting [12.268979675200779]
誤差の蓄積により,高度なモデルでは,長期予測のベースラインモデルを上回る結果が得られない可能性が示唆された。
本稿では,ベースラインモデル上に構築された周波数領域に基づくニューラルネットワークモデルFreDoを提案する。
論文 参考訳(メタデータ) (2022-05-24T18:19:15Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。