A Robust Multisource Remote Sensing Image Matching Method Utilizing Attention and Feature Enhancement Against Noise Interference
- URL: http://arxiv.org/abs/2410.11848v1
- Date: Tue, 01 Oct 2024 03:35:34 GMT
- Title: A Robust Multisource Remote Sensing Image Matching Method Utilizing Attention and Feature Enhancement Against Noise Interference
- Authors: Yuan Li, Dapeng Wu, Yaping Cui, Peng He, Yuan Zhang, Ruyan Wang,
- Abstract summary: We propose a robust multisource remote sensing image matching method utilizing attention and feature enhancement against noise interference.
In the first stage, we combine deep convolution with the attention mechanism of transformer to perform dense feature extraction.
In the second stage, we introduce an outlier removal network based on a binary classification mechanism.
- Score: 15.591520484047914
- License:
- Abstract: Image matching is a fundamental and critical task of multisource remote sensing image applications. However, remote sensing images are susceptible to various noises. Accordingly, how to effectively achieve accurate matching in noise images is a challenging problem. To solve this issue, we propose a robust multisource remote sensing image matching method utilizing attention and feature enhancement against noise interference. In the first stage, we combine deep convolution with the attention mechanism of transformer to perform dense feature extraction, constructing feature descriptors with higher discriminability and robustness. Subsequently, we employ a coarse-to-fine matching strategy to achieve dense matches. In the second stage, we introduce an outlier removal network based on a binary classification mechanism, which can establish effective and geometrically consistent correspondences between images; through weighting for each correspondence, inliers vs. outliers classification are performed, as well as removing outliers from dense matches. Ultimately, we can accomplish more efficient and accurate matches. To validate the performance of the proposed method, we conduct experiments using multisource remote sensing image datasets for comparison with other state-of-the-art methods under different scenarios, including noise-free, additive random noise, and periodic stripe noise. Comparative results indicate that the proposed method has a more well-balanced performance and robustness. The proposed method contributes a valuable reference for solving the difficult problem of noise image matching.
Related papers
- denoiSplit: a method for joint microscopy image splitting and unsupervised denoising [7.362569187959687]
denoiSplit is a method to tackle the challenge of joint semantic image splitting and unsupervised denoising.
Image splitting involves dissecting an image into its distinguishable semantic structures.
We show that the current state-of-the-art method for this task struggles in the presence of image noise.
arXiv Detail & Related papers (2024-03-18T15:03:56Z) - Speckle Noise Reduction in Ultrasound Images using Denoising
Auto-encoder with Skip Connection [0.19116784879310028]
Ultrasound images often contain speckle noise which can lower their resolution and contrast-to-noise ratio.
This can make it more difficult to extract, recognize, and analyze features in the images.
Researchers have proposed several speckle reduction methods, but no single method takes all relevant factors into account.
arXiv Detail & Related papers (2024-03-05T08:08:59Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Linear Combinations of Patches are Unreasonably Effective for Single-Image Denoising [5.893124686141782]
Deep neural networks have revolutionized image denoising in achieving significant accuracy improvements.
To alleviate the requirement to learn image priors externally, single-image methods perform denoising solely based on the analysis of the input noisy image.
This work investigates the effectiveness of linear combinations of patches for denoising under this constraint.
arXiv Detail & Related papers (2022-12-01T10:52:03Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z) - When deep denoising meets iterative phase retrieval [5.639904484784126]
Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data.
Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising.
The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms.
arXiv Detail & Related papers (2020-03-03T21:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.