denoiSplit: a method for joint microscopy image splitting and unsupervised denoising
- URL: http://arxiv.org/abs/2403.11854v3
- Date: Sun, 11 Aug 2024 11:36:17 GMT
- Title: denoiSplit: a method for joint microscopy image splitting and unsupervised denoising
- Authors: Ashesh Ashesh, Florian Jug,
- Abstract summary: denoiSplit is a method to tackle the challenge of joint semantic image splitting and unsupervised denoising.
Image splitting involves dissecting an image into its distinguishable semantic structures.
We show that the current state-of-the-art method for this task struggles in the presence of image noise.
- Score: 7.362569187959687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present denoiSplit, a method to tackle a new analysis task, i.e. the challenge of joint semantic image splitting and unsupervised denoising. This dual approach has important applications in fluorescence microscopy, where semantic image splitting has important applications but noise does generally hinder the downstream analysis of image content. Image splitting involves dissecting an image into its distinguishable semantic structures. We show that the current state-of-the-art method for this task struggles in the presence of image noise, inadvertently also distributing the noise across the predicted outputs. The method we present here can deal with image noise by integrating an unsupervised denoising subtask. This integration results in improved semantic image unmixing, even in the presence of notable and realistic levels of imaging noise. A key innovation in denoiSplit is the use of specifically formulated noise models and the suitable adjustment of KL-divergence loss for the high-dimensional hierarchical latent space we are training. We showcase the performance of denoiSplit across multiple tasks on real-world microscopy images. Additionally, we perform qualitative and quantitative evaluations and compare the results to existing benchmarks, demonstrating the effectiveness of using denoiSplit: a single Variational Splitting Encoder-Decoder (VSE) Network using two suitable noise models to jointly perform semantic splitting and denoising.
Related papers
- A Robust Multisource Remote Sensing Image Matching Method Utilizing Attention and Feature Enhancement Against Noise Interference [15.591520484047914]
We propose a robust multisource remote sensing image matching method utilizing attention and feature enhancement against noise interference.
In the first stage, we combine deep convolution with the attention mechanism of transformer to perform dense feature extraction.
In the second stage, we introduce an outlier removal network based on a binary classification mechanism.
arXiv Detail & Related papers (2024-10-01T03:35:34Z) - Joint End-to-End Image Compression and Denoising: Leveraging Contrastive
Learning and Multi-Scale Self-ONNs [18.71504105967766]
Noisy images are a challenge to image compression algorithms due to the inherent difficulty of compressing noise.
We propose a novel method integrating a multi-scale denoiser comprising of Self Organizing Operational Neural Networks, for joint image compression and denoising.
arXiv Detail & Related papers (2024-02-08T11:33:16Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging [0.0]
We propose Deformed2Self, an end-to-end self-supervised deep learning framework for dynamic imaging denoising.
It combines single-image and multi-image denoising to improve image quality and use a spatial transformer network to model motion between different slices.
arXiv Detail & Related papers (2021-06-23T05:50:19Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
We propose a boosting network to perform denoising and segmentation alternately.
We observe that not only denoising helps combat the drop of segmentation accuracy due to noise, but also pixel-wise semantic information boosts the capability of denoising.
Experimental results show that the denoised image quality is improved substantially and the segmentation accuracy is improved to close to that of clean images.
arXiv Detail & Related papers (2021-02-24T06:48:45Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.