TinyClick: Single-Turn Agent for Empowering GUI Automation
- URL: http://arxiv.org/abs/2410.11871v2
- Date: Thu, 17 Oct 2024 08:03:19 GMT
- Title: TinyClick: Single-Turn Agent for Empowering GUI Automation
- Authors: Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Sebastien Postansque, Jakub Hoscilowicz,
- Abstract summary: We present a single-turn agent for graphical user interface (GUI) interaction tasks, using Vision-Language Model Florence-2-Base.
The agent's primary task is identifying the screen coordinates of the UI element corresponding to the user's command.
It demonstrates strong performance on Screenspot and OmniAct, while maintaining a compact size of 0.27B parameters and minimal latency.
- Score: 0.18846515534317265
- License:
- Abstract: We present a single-turn agent for graphical user interface (GUI) interaction tasks, using Vision-Language Model Florence-2-Base. The agent's primary task is identifying the screen coordinates of the UI element corresponding to the user's command. It demonstrates strong performance on Screenspot and OmniAct, while maintaining a compact size of 0.27B parameters and minimal latency. Relevant improvement comes from multi-task training and MLLM-based data augmentation. Manually annotated corpora are scarce, but we show that MLLM augmentation might produce better results. On Screenspot and OmniAct, our model outperforms both GUI-specific models (e.g., SeeClick) and MLLMs (e.g., GPT-4V).
Related papers
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - ClickAgent: Enhancing UI Location Capabilities of Autonomous Agents [0.0]
ClickAgent is a novel framework for building autonomous agents.
In ClickAgent, the MLLM handles reasoning and action planning, while a separate UI location model identifies the relevant UI elements on the screen.
Our evaluation was conducted on both an Android smartphone emulator and an actual Android smartphone, using the task success rate as the key metric for measuring agent performance.
arXiv Detail & Related papers (2024-10-09T14:49:02Z) - Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding [30.624179161014283]
We propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task.
Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree.
Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements.
arXiv Detail & Related papers (2024-06-27T15:34:16Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
This paper introduces a new dataset, called GUI-World, which features meticulously crafted Human-MLLM annotations.
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUI is a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks.
Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software.
Our evaluation reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks.
arXiv Detail & Related papers (2024-06-14T17:59:08Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments.
We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP)
With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios.
arXiv Detail & Related papers (2024-02-19T08:29:03Z) - MiniGPT-v2: large language model as a unified interface for
vision-language multi-task learning [65.60607895153692]
MiniGPT-v2 is a model that can be treated as a unified interface for better handling various vision-language tasks.
We propose using unique identifiers for different tasks when training the model.
Our results show that MiniGPT-v2 achieves strong performance on many visual question-answering and visual grounding benchmarks.
arXiv Detail & Related papers (2023-10-14T03:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.