論文の概要: Neural Metamorphosis
- arxiv url: http://arxiv.org/abs/2410.11878v1
- Date: Thu, 10 Oct 2024 14:49:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:47.057929
- Title: Neural Metamorphosis
- Title(参考訳): 神経変態
- Authors: Xingyi Yang, Xinchao Wang,
- Abstract要約: 本稿では,ニューラル・メタモルファス(NeuMeta)と呼ばれる,自己変形可能なニューラルネットワークの構築を目的とした新たな学習パラダイムを提案する。
NeuMetaはニューラルネットワークの連続重み多様体を直接学習する。
75%の圧縮速度でもフルサイズの性能を維持する。
- 参考スコア(独自算出の注目度): 72.88137795439407
- License:
- Abstract: This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks. Contrary to crafting separate models for different architectures or sizes, NeuMeta directly learns the continuous weight manifold of neural networks. Once trained, we can sample weights for any-sized network directly from the manifold, even for previously unseen configurations, without retraining. To achieve this ambitious goal, NeuMeta trains neural implicit functions as hypernetworks. They accept coordinates within the model space as input, and generate corresponding weight values on the manifold. In other words, the implicit function is learned in a way, that the predicted weights is well-performed across various models sizes. In training those models, we notice that, the final performance closely relates on smoothness of the learned manifold. In pursuit of enhancing this smoothness, we employ two strategies. First, we permute weight matrices to achieve intra-model smoothness, by solving the Shortest Hamiltonian Path problem. Besides, we add a noise on the input coordinates when training the implicit function, ensuring models with various sizes shows consistent outputs. As such, NeuMeta shows promising results in synthesizing parameters for various network configurations. Our extensive tests in image classification, semantic segmentation, and image generation reveal that NeuMeta sustains full-size performance even at a 75% compression rate.
- Abstract(参考訳): 本稿では,ニューラル・メタモルファス(NeuMeta)と呼ばれる,自己変形可能なニューラルネットワークの構築を目的とした新たな学習パラダイムを提案する。
異なるアーキテクチャやサイズの別々のモデルを作成するのとは対照的に、NeuMetaはニューラルネットワークの連続的な重み多様体を直接学習する。
一度トレーニングされたら、以前見えなかった構成であっても、多様体から直接、任意のサイズのネットワークに対して、再トレーニングなしで重みをサンプリングできます。
この野心的な目標を達成するため、NeuMetaはハイパーネットワークとして神経暗黙の機能を訓練している。
彼らはモデル空間内の座標を入力として受け入れ、多様体上の対応する重み値を生成する。
言い換えれば、暗黙の関数は、予測された重みは様々なモデルサイズでよく機能する、という方法で学習される。
これらのモデルのトレーニングにおいて、最終的な性能は学習された多様体の滑らかさに密接に関係していることに気付く。
この円滑性を高めるために、我々は2つの戦略を採用する。
まず、最短ハミルトンパス問題を解くことにより、モデル内滑らか性を達成するために重み行列をパーミュレートする。
さらに、暗黙の関数を訓練する際、入力座標にノイズを加え、様々な大きさのモデルが一貫した出力を示すことを保証します。
このように、NeuMetaは様々なネットワーク構成のパラメータを合成する有望な結果を示す。
画像分類,セマンティックセグメンテーション,画像生成における広範囲な試験により,NeuMetaは75%圧縮速度でもフルサイズ性能を維持していることが明らかとなった。
関連論文リスト
- Generative Feature Training of Thin 2-Layer Networks [0.0]
正方形損失と小さなデータセットに基づく隠れ重みの少ない2層ニューラルネットワークによる関数近似を考察する。
高度に隠蔽されたモデルとして、学習された分布提案からのサンプルを用いて隠れ重みを利用する。
潜時空間における勾配に基づく後処理により, 試料重量を改良する。
論文 参考訳(メタデータ) (2024-11-11T10:32:33Z) - The Persian Rug: solving toy models of superposition using large-scale symmetries [0.0]
入力次元が大きければ最小限の非線形スパースデータオートエンコーダによって学習されたアルゴリズムの完全なメカニスティック記述を示す。
我々の研究は、オートエンコーダの構造を理解する技術を導入することによって、ニューラルネットワークの解釈可能性に貢献している。
論文 参考訳(メタデータ) (2024-10-15T22:52:45Z) - MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters [19.358670728803336]
ほとんどのディープニューラルネットワークは、固定されたネットワークアーキテクチャの下でトレーニングされており、アーキテクチャの変更時に再トレーニングを必要とする。
これを回避するために、時間とともにランダムな重みを加えて小さなネットワークから成長させ、徐々にターゲットネットワークサイズを達成できる。
このナイーブなアプローチは、成長するプロセスに多くのノイズをもたらすため、実際には不足しています。
論文 参考訳(メタデータ) (2023-11-07T11:37:08Z) - PRANC: Pseudo RAndom Networks for Compacting deep models [22.793523211040682]
PRANCはディープモデルの大幅なコンパクト化を可能にする。
本研究では,PRANCを用いて画像分類モデルを構築し,関連する暗黙的ニューラルネットワークをコンパクト化することで画像の圧縮を行う。
論文 参考訳(メタデータ) (2022-06-16T22:03:35Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - From Boltzmann Machines to Neural Networks and Back Again [31.613544605376624]
制限ボルツマンマシン(Restricted Boltzmann Machines)は、おそらく最もよく研究されている潜在変数モデルのクラスである。
我々の結果は、$ell_infty$bounded inputの下で二層ニューラルネットワークを学習するための新しい接続に基づいている。
次に,分散仮定を使わずに,関連するネットワークのクラスに対して可能なものよりも,より優れたランタイムで教師付きRAMの自然なクラスを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-25T00:42:50Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。