論文の概要: NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go
- arxiv url: http://arxiv.org/abs/2106.09431v1
- Date: Thu, 17 Jun 2021 12:25:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:50:40.555204
- Title: NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go
- Title(参考訳): NeuroMorph: One Goにおける教師なし形状補間と対応
- Authors: Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut,
Natalia Neverova, Daniel Cremers, Andrea Vedaldi
- Abstract要約: 入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
- 参考スコア(独自算出の注目度): 109.88509362837475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present NeuroMorph, a new neural network architecture that takes as input
two 3D shapes and produces in one go, i.e. in a single feed forward pass, a
smooth interpolation and point-to-point correspondences between them. The
interpolation, expressed as a deformation field, changes the pose of the source
shape to resemble the target, but leaves the object identity unchanged.
NeuroMorph uses an elegant architecture combining graph convolutions with
global feature pooling to extract local features. During training, the model is
incentivized to create realistic deformations by approximating geodesics on the
underlying shape space manifold. This strong geometric prior allows to train
our model end-to-end and in a fully unsupervised manner without requiring any
manual correspondence annotations. NeuroMorph works well for a large variety of
input shapes, including non-isometric pairs from different object categories.
It obtains state-of-the-art results for both shape correspondence and
interpolation tasks, matching or surpassing the performance of recent
unsupervised and supervised methods on multiple benchmarks.
- Abstract(参考訳): ニューロモルフィック(neuromorph)とは,2つの3次元形状を入力として生成する,新たなニューラルネットワークアーキテクチャである。
単一のフィードフォワードパスでは、スムーズな補間とポイント・ツー・ポイント対応がある。
補間は変形場として表現され、ターゲットに類似するようにソース形状のポーズを変更するが、オブジェクトの同一性は変わらない。
NeuroMorphは、グラフ畳み込みとグローバル機能プーリングを組み合わせたエレガントなアーキテクチャを使用して、局所的な特徴を抽出する。
トレーニング中、モデルにインセンティブを与え、基礎となる形状空間多様体上の測地線を近似することで、現実的な変形を生み出す。
この強力な幾何学的事前は、手動の対応アノテーションを必要とせずに、エンドツーエンドと完全に教師なしの方法でモデルのトレーニングを可能にします。
NeuroMorphは、さまざまなオブジェクトカテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
複数のベンチマークにおいて、最新の教師なしおよび教師なしの手法のパフォーマンスを一致または超えた形状対応タスクと補間タスクの両方に対する最先端の結果を得る。
関連論文リスト
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
局所球面ユークリッド3次元等分散特性をSE(3)メッセージパッシングに基づく伝搬により埋め込んだグラフニューラルネットワークモデルを提案する。
我々のモデルは、主に記述モジュール、同変グラフ層、類似性、最終的な回帰層から構成される。
3DMatchおよびKITTIデータセットで行った実験は、最先端のアプローチと比較して、我々のモデルの魅力的で堅牢な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T06:48:01Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
本稿では,3次元形状間の対応性を計算するためのゼロショット手法を提案する。
我々は、最近の基礎モデルの言語と視覚における例外的な推論能力を活用している。
提案手法は, 強い非等尺形状の間において, ゼロショット方式で高確率な結果をもたらす。
論文 参考訳(メタデータ) (2023-06-05T21:14:23Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSMは、非剛体形状対応のための新しい教師なし学習手法である。
学習形態の集合に親和性グラフを自己教師型で構築する。
近年の形状対応ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2022-12-06T12:09:24Z) - U-mesh: Human Correspondence Matching with Mesh Convolutional Networks [15.828285556159026]
本稿では,パラメータテンプレートモデルを生の走査メッシュに適合させるために,レグレッション(ボトムアップ)と生成(トップダウン)のエレガントな融合を提案する。
最初の大きな貢献は、テンプレート表面への点対応を予測する固有の畳み込みメッシュU-netアーキテクチャである。
FAUST対応課題に対する提案手法の評価を行い,対象者間対応技術の現状を20%(33%)改善する方法について検討した。
論文 参考訳(メタデータ) (2021-08-15T08:58:45Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
本稿では,2つの強く相互作用する手の位置と形状をリアルタイムに再現する新しい手法を提案する。
われわれのアプローチは、有利なプロパティの広範なリスト、すなわちマーカーレスを組み合わせている。
過去の研究で示された複雑性レベルを超える場面で、最先端の結果を示す。
論文 参考訳(メタデータ) (2021-06-15T11:39:49Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。