論文の概要: Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
- arxiv url: http://arxiv.org/abs/2410.11933v1
- Date: Tue, 15 Oct 2024 17:09:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:16.467052
- Title: Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
- Title(参考訳): RNA特性予測における幾何学的文脈の影響
- Authors: Junjie Xu, Artem Moskalev, Tommaso Mansi, Mangal Prakash, Rui Liao,
- Abstract要約: RNA構造は1D配列、2Dトポロジカルグラフ、3Dオール原子モデルとして表現できる。
既存の作品は、主に2次元と3次元の幾何学的文脈を見渡す1次元シーケンスベースのモデルに焦点を当てている。
本研究では,RNA特性予測に明示的な2次元および3次元幾何情報を取り入れた最初の体系的評価を行った。
- 参考スコア(独自算出の注目度): 6.559586725997741
- License:
- Abstract: Accurate prediction of RNA properties, such as stability and interactions, is crucial for advancing our understanding of biological processes and developing RNA-based therapeutics. RNA structures can be represented as 1D sequences, 2D topological graphs, or 3D all-atom models, each offering different insights into its function. Existing works predominantly focus on 1D sequence-based models, which overlook the geometric context provided by 2D and 3D geometries. This study presents the first systematic evaluation of incorporating explicit 2D and 3D geometric information into RNA property prediction, considering not only performance but also real-world challenges such as limited data availability, partial labeling, sequencing noise, and computational efficiency. To this end, we introduce a newly curated set of RNA datasets with enhanced 2D and 3D structural annotations, providing a resource for model evaluation on RNA data. Our findings reveal that models with explicit geometry encoding generally outperform sequence-based models, with an average prediction RMSE reduction of around 12% across all various RNA tasks and excelling in low-data and partial labeling regimes, underscoring the value of explicitly incorporating geometric context. On the other hand, geometry-unaware sequence-based models are more robust under sequencing noise but often require around 2-5x training data to match the performance of geometry-aware models. Our study offers further insights into the trade-offs between different RNA representations in practical applications and addresses a significant gap in evaluating deep learning models for RNA tasks.
- Abstract(参考訳): 安定性や相互作用などのRNA特性の正確な予測は、生物学的プロセスの理解を深め、RNAベースの治療法を開発するために重要である。
RNA構造は1D配列、2Dトポロジカルグラフ、または3Dオール原子モデルとして表され、それぞれがその機能について異なる洞察を与える。
既存の作品は、主に2次元と3次元の幾何学的文脈を見渡す1次元シーケンスベースのモデルに焦点を当てている。
本研究では,RNA特性予測に明示的な2Dおよび3D幾何情報を取り入れた最初の体系的評価を行い,その性能だけでなく,データ可用性,部分ラベリング,シークエンシングノイズ,計算効率といった実世界の課題も検討した。
そこで本研究では,2次元および3次元構造アノテーションを付加したRNAデータセットを新たにキュレートし,RNAデータのモデル評価のためのリソースを提供する。
以上の結果から, 明示的幾何エンコーディングモデルでは, 全てのRNAタスクで平均約12%のRMSE削減が達成され, 低データおよび部分的ラベリングレシエーションの精度が向上し, 空間的コンテキストを明示的に組み込む価値が評価された。
一方、幾何非認識シーケンスベースモデルは、シークエンシングノイズ下ではより堅牢であるが、幾何対応モデルの性能に合わせるために、およそ2-5倍のトレーニングデータを必要とすることが多い。
本研究は,実際の応用における異なるRNA表現間のトレードオフに関するさらなる知見を提供し,RNAタスクの深層学習モデル評価における大きなギャップに対処するものである。
関連論文リスト
- Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - Splicing Up Your Predictions with RNA Contrastive Learning [4.35360799431127]
我々は、代替スプライシング遺伝子複製によって生成された機能配列間の類似性を利用して、対照的な学習手法をゲノムデータに拡張する。
RNA半減期やリボソーム負荷予測などの下流タスクにおけるそれらの有用性を検証する。
学習された潜在空間の探索は、我々の対照的な目的が意味論的に意味のある表現をもたらすことを示した。
論文 参考訳(メタデータ) (2023-10-12T21:51:25Z) - A Systematic Survey in Geometric Deep Learning for Structure-based Drug
Design [63.30166298698985]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
幾何学的深層学習の最近の進歩は、3次元幾何データの統合と処理に焦点をあてて、構造に基づく薬物設計の分野を大いに進歩させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - gRNAde: Geometric Deep Learning for 3D RNA inverse design [14.729049204432027]
gRNAdeは3次元RNAバックボーンで動作する幾何学的RNA設計パイプラインである。
構造と力学を明示的に考慮したシーケンスを生成する。
論文 参考訳(メタデータ) (2023-05-24T05:46:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
このようなグラフ埋め込みを学習するための幾何散乱オートエンコーダ(GSAE)ネットワークを提案する。
我々の埋め込みネットワークは、最近提案された幾何散乱変換を用いて、まずリッチグラフ特徴を抽出する。
GSAEは、構造とエネルギーの両方でRNAグラフを整理し、ビスタブルRNA構造を正確に反映していることを示す。
論文 参考訳(メタデータ) (2020-06-12T00:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。