DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models
- URL: http://arxiv.org/abs/2410.11988v2
- Date: Mon, 04 Nov 2024 02:28:13 GMT
- Title: DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models
- Authors: Shangqian Gao, Chi-Heng Lin, Ting Hua, Tang Zheng, Yilin Shen, Hongxia Jin, Yen-Chang Hsu,
- Abstract summary: Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks.
Increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices.
We propose a novel approach that relaxes the constraint imposed by regular structural pruning methods.
- Score: 62.98273649512654
- License:
- Abstract: Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks, including language modeling, understanding, and generation. However, the increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices. Structural pruning has emerged as a promising solution to reduce the costs of LLMs without requiring post-processing steps. Prior structural pruning methods either follow the dependence of structures at the cost of limiting flexibility, or introduce non-trivial additional parameters by incorporating different projection matrices. In this work, we propose a novel approach that relaxes the constraint imposed by regular structural pruning methods and eliminates the structural dependence along the embedding dimension. Our dimension-independent structural pruning method offers several benefits. Firstly, our method enables different blocks to utilize different subsets of the feature maps. Secondly, by removing structural dependence, we facilitate each block to possess varying widths along its input and output dimensions, thereby significantly enhancing the flexibility of structural pruning. We evaluate our method on various LLMs, including OPT, LLaMA, LLaMA-2, Phi-1.5, and Phi-2. Experimental results demonstrate that our approach outperforms other state-of-the-art methods, showing for the first time that structural pruning can achieve an accuracy similar to semi-structural pruning.
Related papers
- Greedy Output Approximation: Towards Efficient Structured Pruning for LLMs Without Retraining [16.026565606764954]
We simplify the pruning process for Transformer-based large language models (LLMs)
We propose two inference-aware pruning criteria derived from the optimization perspective of output approximation.
We also introduce a two-step reconstruction technique to mitigate pruning errors without model retraining.
arXiv Detail & Related papers (2024-07-26T23:53:59Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - Dependency-Aware Semi-Structured Sparsity of GLU Variants in Large Language Models [15.56145303022529]
We propose Dependency-aware Semi-structured Sparsity (DaSS) for large language models.
DaSS incorporates structural dependency into the magnitude-based pruning.
Empirical evaluations on LLaMA2, Mistral, and Gemma model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns.
arXiv Detail & Related papers (2024-05-03T09:13:13Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Fluctuation-based Adaptive Structured Pruning for Large Language Models [44.217363567065]
FLAP (FLuctuation-based Adaptive Structured Pruning) is a retraining-free structured pruning framework for Large Language Models.
It is hardware-friendly by effectively reducing storage and enhancing inference speed.
arXiv Detail & Related papers (2023-12-19T09:23:48Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
We study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models.
Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains.
arXiv Detail & Related papers (2023-10-10T15:13:30Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.