Dependency-Aware Semi-Structured Sparsity of GLU Variants in Large Language Models
- URL: http://arxiv.org/abs/2405.01943v3
- Date: Sun, 20 Oct 2024 12:27:26 GMT
- Title: Dependency-Aware Semi-Structured Sparsity of GLU Variants in Large Language Models
- Authors: Zhiyu Guo, Hidetaka Kamigaito, Taro Wanatnabe,
- Abstract summary: We propose Dependency-aware Semi-structured Sparsity (DaSS) for large language models.
DaSS incorporates structural dependency into the magnitude-based pruning.
Empirical evaluations on LLaMA2, Mistral, and Gemma model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns.
- Score: 15.56145303022529
- License:
- Abstract: The rapid advancement in Large Language Models (LLMs) has markedly enhanced the capabilities of language understanding and generation. However, the substantial model size poses hardware challenges, affecting both memory size for serving and inference latency for token generation. To address those challenges, we propose Dependency-aware Semi-structured Sparsity (DaSS), a novel method for the recent prevalent GLU-based LLMs pruning, which incorporates structural dependency into the weight magnitude-based unstructured pruning. We introduce an MLP-specific pruning metric that evaluates the importance of each weight by jointly considering its magnitude and its corresponding MLP intermediate activation norms. DaSS facilitates a balance between the adaptability offered by unstructured pruning and the structural consistency inherent in dependency-based structured pruning. Empirical evaluations on LLaMA2, Mistral, and Gemma model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns but also maintains the computational efficiency of Wanda.
Related papers
- Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models [62.98273649512654]
Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks.
Increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices.
We propose a novel approach that relaxes the constraint imposed by regular structural pruning methods.
arXiv Detail & Related papers (2024-10-15T18:51:18Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Toward Adaptive Large Language Models Structured Pruning via Hybrid-grained Weight Importance Assessment [58.030196381554745]
We introduce the Hybrid-grained Weight Importance Assessment (HyWIA), a novel method that merges fine-grained and coarse-grained evaluations of weight importance for the pruning of large language models (LLMs)
Extensive experiments on LLaMA-V1/V2, Vicuna, Baichuan, and Bloom across various benchmarks demonstrate the effectiveness of HyWIA in pruning LLMs.
arXiv Detail & Related papers (2024-03-16T04:12:50Z) - Quantized Embedding Vectors for Controllable Diffusion Language Models [1.3287140837287783]
Quantized Embedding Controllable Diffusion Language Model improves controllability, portability, and inference speed of language models.
QE-CDLM builds upon the recent successful controllable DLMs by remodeling the task-specific embedding space via quantization.
arXiv Detail & Related papers (2024-02-15T17:02:48Z) - Fluctuation-based Adaptive Structured Pruning for Large Language Models [44.217363567065]
FLAP (FLuctuation-based Adaptive Structured Pruning) is a retraining-free structured pruning framework for Large Language Models.
It is hardware-friendly by effectively reducing storage and enhancing inference speed.
arXiv Detail & Related papers (2023-12-19T09:23:48Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.