ToMoE: Converting Dense Large Language Models to Mixture-of-Experts through Dynamic Structural Pruning
- URL: http://arxiv.org/abs/2501.15316v1
- Date: Sat, 25 Jan 2025 20:01:42 GMT
- Title: ToMoE: Converting Dense Large Language Models to Mixture-of-Experts through Dynamic Structural Pruning
- Authors: Shangqian Gao, Ting Hua, Reza Shirkavand, Chi-Heng Lin, Zhen Tang, Zhengao Li, Longge Yuan, Fangyi Li, Zeyu Zhang, Alireza Ganjdanesh, Lou Qian, Xu Jie, Yen-Chang Hsu,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable abilities in tackling a wide range of complex tasks.
Their huge computational and memory costs raise significant challenges in deploying these models on resource-constrained devices.
We introduce a different dynamic pruning method that pushes dense models to maintain a fixed number of active parameters.
- Score: 24.8038863056542
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable abilities in tackling a wide range of complex tasks. However, their huge computational and memory costs raise significant challenges in deploying these models on resource-constrained devices or efficiently serving them. Prior approaches have attempted to alleviate these problems by permanently removing less important model structures, yet these methods often result in substantial performance degradation due to the permanent deletion of model parameters. In this work, we tried to mitigate this issue by reducing the number of active parameters without permanently removing them. Specifically, we introduce a differentiable dynamic pruning method that pushes dense models to maintain a fixed number of active parameters by converting their MLP layers into a Mixture of Experts (MoE) architecture. Our method, even without fine-tuning, consistently outperforms previous structural pruning techniques across diverse model families, including Phi-2, LLaMA-2, LLaMA-3, and Qwen-2.5.
Related papers
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models [62.98273649512654]
Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks.
Increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices.
We propose a novel approach that relaxes the constraint imposed by regular structural pruning methods.
arXiv Detail & Related papers (2024-10-15T18:51:18Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.
AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - DPPA: Pruning Method for Large Language Model to Model Merging [39.13317231533299]
We introduce a dual-stage method termed Dynamic Pruning Partition Amplification (DPPA) to tackle the challenge of merging complex fine-tuned models.
We show that our method maintains a mere 20% of domain-specific parameters and yet delivers a performance comparable to other methodologies.
Our method displays outstanding performance post-pruning, leading to a significant improvement of nearly 20% performance in model merging.
arXiv Detail & Related papers (2024-03-05T09:12:49Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
We introduce parameter-efficient sparsity crafting (PESC)
PESC crafts dense models into sparse models using the mixture-of-experts (MoE) architecture.
Our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GP3.5.
arXiv Detail & Related papers (2024-01-05T09:58:09Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.