Beyond Labels: A Self-Supervised Framework with Masked Autoencoders and Random Cropping for Breast Cancer Subtype Classification
- URL: http://arxiv.org/abs/2410.12006v1
- Date: Tue, 15 Oct 2024 19:13:05 GMT
- Title: Beyond Labels: A Self-Supervised Framework with Masked Autoencoders and Random Cropping for Breast Cancer Subtype Classification
- Authors: Annalisa Chiocchetti, Marco Dossena, Christopher Irwin, Luigi Portinale,
- Abstract summary: We learn a self-supervised embedding tailored for computer vision tasks in this domain.
We generate a large dataset from WSIs automatically.
We evaluate our model's performance on the BRACS dataset and compare it with existing benchmarks.
- Score: 0.3374875022248865
- License:
- Abstract: This work contributes to breast cancer sub-type classification using histopathological images. We utilize masked autoencoders (MAEs) to learn a self-supervised embedding tailored for computer vision tasks in this domain. This embedding captures informative representations of histopathological data, facilitating feature learning without extensive labeled datasets. During pre-training, we investigate employing a random crop technique to generate a large dataset from WSIs automatically. Additionally, we assess the performance of linear probes for multi-class classification tasks of cancer sub-types using the representations learnt by the MAE. Our approach aims to achieve strong performance on downstream tasks by leveraging the complementary strengths of ViTs and autoencoders. We evaluate our model's performance on the BRACS dataset and compare it with existing benchmarks.
Related papers
- Masked Image Modeling: A Survey [73.21154550957898]
Masked image modeling emerged as a powerful self-supervised learning technique in computer vision.
We construct a taxonomy and review the most prominent papers in recent years.
We aggregate the performance results of various masked image modeling methods on the most popular datasets.
arXiv Detail & Related papers (2024-08-13T07:27:02Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels [35.43549147657739]
We propose SS-StyleGAN, a self-supervised approach for image annotation and classification suitable for extremely small annotated datasets.
We show that the proposed method attains strong classification results using small labeled datasets of sizes 50 and even 10.
arXiv Detail & Related papers (2023-12-26T09:46:50Z) - SurgMAE: Masked Autoencoders for Long Surgical Video Analysis [4.866110274299399]
Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs)
In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain.
We propose SurgMAE, which is a novel architecture with a masking strategy on sampling high-temporal tokens for MAE.
arXiv Detail & Related papers (2023-05-19T06:12:50Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
We propose an architecture for image stratification based on a conditional variational autoencoder.
We use a continuous latent space to represent the continuum of disorders and find clusters during training, which can then be used for image/patient stratification.
We demonstrate that our method outperforms baselines in terms of kNN accuracy measured on a classification task against a standard VAE.
arXiv Detail & Related papers (2022-09-25T17:55:31Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.