Testing Causal Explanations: A Case Study for Understanding the Effect of Interventions on Chronic Kidney Disease
- URL: http://arxiv.org/abs/2410.12047v2
- Date: Thu, 17 Oct 2024 23:40:48 GMT
- Title: Testing Causal Explanations: A Case Study for Understanding the Effect of Interventions on Chronic Kidney Disease
- Authors: Panayiotis Petousis, David Gordon, Susanne B. Nicholas, Alex A. T. Bui,
- Abstract summary: We developed a methodology that uses a large observational electronic health record dataset.
Principles of regression discontinuity were used to derive randomized data subsets to test expert-driven interventions.
This methodology demonstrates how real-world EHR data can be used to provide population-level insights to inform improved healthcare delivery.
- Score: 1.2449538970962482
- License:
- Abstract: Randomized controlled trials (RCTs) are the standard for evaluating the effectiveness of clinical interventions. To address the limitations of RCTs on real-world populations, we developed a methodology that uses a large observational electronic health record (EHR) dataset. Principles of regression discontinuity (rd) were used to derive randomized data subsets to test expert-driven interventions using dynamic Bayesian Networks (DBNs) do-operations. This combined method was applied to a chronic kidney disease (CKD) cohort of more than two million individuals and used to understand the associational and causal relationships of CKD variables with respect to a surrogate outcome of >=40% decline in estimated glomerular filtration rate (eGFR). The associational and causal analyses depicted similar findings across DBNs from two independent healthcare systems. The associational analysis showed that the most influential variables were eGFR, urine albumin-to-creatinine ratio, and pulse pressure, whereas the causal analysis showed eGFR as the most influential variable, followed by modifiable factors such as medications that may impact kidney function over time. This methodology demonstrates how real-world EHR data can be used to provide population-level insights to inform improved healthcare delivery.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
Chronic Kidney Disease (CKD) is a heterogeneous disorder that significantly impacts kidney structure and functions, eventually leading to kidney failure.
The goal of this research is to visualize dominating features, feature scores, and values exhibited for early prognosis and detection of CKD using ensemble learning and explainable AI.
arXiv Detail & Related papers (2024-06-10T18:46:14Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
Rheumatoid arthritis (RA) is an autoimmune condition caused when patients' immune system mistakenly targets their own tissue.
Machine learning (ML) has the potential to identify patterns in patient electronic health records to forecast the best clinical treatment to improve patient outcomes.
This study introduced a Drug Response Prediction (TNF) framework with two main goals: 1) design a data processing pipeline to extract information from clinical data, and then preprocess it for functional use, and 2) predict RA patient's responses to drugs and evaluate classification models' performance.
arXiv Detail & Related papers (2022-10-14T15:15:37Z) - Causal Discovery on the Effect of Antipsychotic Drugs on Delirium
Patients in the ICU using Large EHR Dataset [1.278093617645299]
Delirium occurs in about 80% cases in the Intensive Care Unit (ICU)
Delirium does not have any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD)
Multiple studies have shown controversy over the efficacy or safety of APD in treating delirium.
arXiv Detail & Related papers (2022-04-28T21:43:02Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
Idiopathic Pulmonary Fibrosis (IPF) is an inexorably progressive fibrotic lung disease with a variable and unpredictable rate of progression.
CT scans of the lungs inform clinical assessment of IPF patients and contain pertinent information related to disease progression.
We propose a multi-modal method that uses neural networks and memory banks to predict the survival of IPF patients using clinical and imaging data.
arXiv Detail & Related papers (2022-03-21T23:48:47Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Segmentation analysis and the recovery of queuing parameters via the
Wasserstein distance: a study of administrative data for patients with
chronic obstructive pulmonary disease [0.0]
This work uses a data-driven approach to analyse how the resource requirements of patients with chronic obstructive pulmonary disease (COPD) may change.
It is composed of a novel combination of often distinct modes of analysis: segmentation, operational queuing theory, and the recovery of parameters from incomplete data.
arXiv Detail & Related papers (2020-08-10T17:47:34Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.