Segmentation analysis and the recovery of queuing parameters via the
Wasserstein distance: a study of administrative data for patients with
chronic obstructive pulmonary disease
- URL: http://arxiv.org/abs/2008.04295v3
- Date: Fri, 14 Aug 2020 11:43:00 GMT
- Title: Segmentation analysis and the recovery of queuing parameters via the
Wasserstein distance: a study of administrative data for patients with
chronic obstructive pulmonary disease
- Authors: Henry Wilde and Vincent Knight and Jonathan Gillard and Kendal Smith
- Abstract summary: This work uses a data-driven approach to analyse how the resource requirements of patients with chronic obstructive pulmonary disease (COPD) may change.
It is composed of a novel combination of often distinct modes of analysis: segmentation, operational queuing theory, and the recovery of parameters from incomplete data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work uses a data-driven approach to analyse how the resource
requirements of patients with chronic obstructive pulmonary disease (COPD) may
change, quantifying how those changes impact the hospital system with which the
patients interact. This approach is composed of a novel combination of often
distinct modes of analysis: segmentation, operational queuing theory, and the
recovery of parameters from incomplete data. By combining these methods as
presented here, this work demonstrates that potential limitations around the
availability of fine-grained data can be overcome. Thus, finding useful
operational results despite using only administrative data. The paper begins by
finding a useful clustering of the population from this granular data that
feeds into a multi-class M/M/c model, whose parameters are recovered from the
data via parameterisation and the Wasserstein distance. This model is then used
to conduct an informative analysis of the underlying queuing system and the
needs of the population under study through several what-if scenarios. The
analyses used to form and study this model consider, in effect, all types of
patient arrivals and how those types impact the system. With that, this study
finds that there are no quick solutions to reduce the impact of COPD patients
on the system, including adding capacity to the system. In this analysis, the
only effective intervention to reduce the strain caused by those presenting
with COPD is to enact external policies which directly improve the overall
health of the COPD population before they arrive at the hospital.
Related papers
- Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
This study focuses on predicting patient readmission within less than 30 days using text mining techniques.
Various machine learning and deep learning methods were employed to develop a classification model for this purpose.
arXiv Detail & Related papers (2024-03-12T09:03:44Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Enabling scalable clinical interpretation of ML-based phenotypes using
real world data [0.0]
This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets.
We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results.
arXiv Detail & Related papers (2022-08-02T17:31:03Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
Idiopathic Pulmonary Fibrosis (IPF) is an inexorably progressive fibrotic lung disease with a variable and unpredictable rate of progression.
CT scans of the lungs inform clinical assessment of IPF patients and contain pertinent information related to disease progression.
We propose a multi-modal method that uses neural networks and memory banks to predict the survival of IPF patients using clinical and imaging data.
arXiv Detail & Related papers (2022-03-21T23:48:47Z) - Enhancing Causal Estimation through Unlabeled Offline Data [7.305019142196583]
We wish to assess relevant unmeasured physiological variables that have a strong effect on the patients diagnosis and treatment.
Extensive offline information is available about previous patients, that may only be partially related to the present patient.
Our proposed approach consists of three stages: (i) Use the abundant offline data in order to create both a non-causal and a causal estimator.
We demonstrate the effectiveness of this methodology on a (non-medical) real-world task, in situations where the offline data is only partially related to the new observations.
arXiv Detail & Related papers (2022-02-16T07:02:42Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.