Engineering entangled photons for transmission in ring-core optical
fibers
- URL: http://arxiv.org/abs/2109.03064v1
- Date: Tue, 7 Sep 2021 12:55:33 GMT
- Title: Engineering entangled photons for transmission in ring-core optical
fibers
- Authors: G. Ca\~nas, E. S. G\'omez, E. Baradit, G. Lima, and S. P. Walborn
- Abstract summary: We study the generation of entangled photons tailor-made for coupling into ring core optical fibers.
We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capacity of optical communication channels can be increased by space
division multiplexing in structured optical fibers. Radial core optical fibers
allows for the propagation of twisted light--eigenmodes of orbital angular
momentum, which have attracted considerable attention for high-dimensional
quantum information. Here we study the generation of entangled photons that are
tailor-made for coupling into ring core optical fibers. We show that the
coupling of photon pairs produced by parametric down-conversion can be
increased by close to a factor of three by pumping the non-linear crystal with
a perfect vortex mode with orbital angular momentum $\ell$, rather than a
gaussian mode. Moreover, the two-photon orbital angular momentum spectrum has a
nearly constant shape. This provides an interesting scenario for quantum state
engineering, as pumping the crystal with a superposition of perfect vortex
modes can be used in conjunction with the mode filtering properties of the ring
core fiber to produce simple and interesting quantum states.
Related papers
- Generation of polarization-entangled counter-propagating photons with high orbital angular momentum [0.0]
We propose a fiber-based source of polarization-entangled photons in high-order angular momentum modes.
The photons are converted to modes exhibiting large OAM by the two helical gratings inscribed in the core of the fiber.
arXiv Detail & Related papers (2024-10-15T23:23:20Z) - Optical vortex harmonic generation facilitated by photonic spin-orbit
entanglement [0.20999222360659608]
We report the first experimental demonstration of nonlinear optical frequency conversion.
We produce an optical vortex at the third harmonic, which has long been regarded as a forbidden process in isotropic media.
Our work opens up new possibilities of spin-orbit-coupling subwavelength waveguides.
arXiv Detail & Related papers (2023-08-05T16:01:59Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.