Unveiling the Limits of Alignment: Multi-modal Dynamic Local Fusion Network and A Benchmark for Unaligned RGBT Video Object Detection
- URL: http://arxiv.org/abs/2410.12143v1
- Date: Wed, 16 Oct 2024 01:06:12 GMT
- Title: Unveiling the Limits of Alignment: Multi-modal Dynamic Local Fusion Network and A Benchmark for Unaligned RGBT Video Object Detection
- Authors: Qishun Wang, Zhengzheng Tu, Kunpeng Wang, Le Gu, Chuanwang Guo,
- Abstract summary: Current RGB-Thermal Video Object Detection (RGBT VOD) methods depend on manually aligning data at the image level.
We propose a Multi-modal Dynamic Local fusion Network (MDLNet) designed to handle unaligned RGBT pairs.
We conduct a comprehensive evaluation and comparison with MDLNet and state-of-the-art (SOTA) models, demonstrating the superior effectiveness of MDLNet.
- Score: 5.068440399797739
- License:
- Abstract: Current RGB-Thermal Video Object Detection (RGBT VOD) methods still depend on manually aligning data at the image level, which hampers its practical application in real-world scenarios since image pairs captured by multispectral sensors often differ in both fields of view and resolution. To address this limitation, we propose a Multi-modal Dynamic Local fusion Network (MDLNet) designed to handle unaligned RGBT image pairs. Specifically, our proposed Multi-modal Dynamic Local Fusion (MDLF) module includes a set of predefined boxes, each enhanced with random Gaussian noise to generate a dynamic box. Each box selects a local region from the original high-resolution RGB image. This region is then fused with the corresponding information from another modality and reinserted into the RGB. This method adapts to various data alignment scenarios by interacting with local features across different ranges. Simultaneously, we introduce a Cascaded Temporal Scrambler (CTS) within an end-to-end architecture. This module leverages consistent spatiotemporal information from consecutive frames to enhance the representation capability of the current frame while maintaining network efficiency. We have curated an open dataset called UVT-VOD2024 for unaligned RGBT VOD. It consists of 30,494 pairs of unaligned RGBT images captured directly from a multispectral camera. We conduct a comprehensive evaluation and comparison with MDLNet and state-of-the-art (SOTA) models, demonstrating the superior effectiveness of MDLNet. We will release our code and UVT-VOD2024 to the public for further research.
Related papers
- A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
We propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior.
We introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information.
We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image.
arXiv Detail & Related papers (2024-11-04T08:50:16Z) - Monocular Visual Place Recognition in LiDAR Maps via Cross-Modal State Space Model and Multi-View Matching [2.400446821380503]
We introduce an efficient framework to learn descriptors for both RGB images and point clouds.
It takes visual state space model (VMamba) as the backbone and employs a pixel-view-scene joint training strategy.
A visible 3D points overlap strategy is then designed to quantify the similarity between point cloud views and RGB images for multi-view supervision.
arXiv Detail & Related papers (2024-10-08T18:31:41Z) - ViDSOD-100: A New Dataset and a Baseline Model for RGB-D Video Salient Object Detection [51.16181295385818]
We first collect an annotated RGB-D video SODOD (DSOD-100) dataset, which contains 100 videos within a total of 9,362 frames.
All the frames in each video are manually annotated to a high-quality saliency annotation.
We propose a new baseline model, named attentive triple-fusion network (ATF-Net) for RGB-D salient object detection.
arXiv Detail & Related papers (2024-06-18T12:09:43Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Unsupervised HDR Image and Video Tone Mapping via Contrastive Learning [19.346284003982035]
We propose a unified framework (IVTMNet) for unsupervised image and video tone mapping.
For video tone mapping, we propose a temporal-feature-replaced (TFR) module to efficiently utilize the temporal correlation.
Experimental results demonstrate that our method outperforms state-of-the-art image and video tone mapping methods.
arXiv Detail & Related papers (2023-03-13T17:45:39Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - End-to-end Multi-modal Video Temporal Grounding [105.36814858748285]
We propose a multi-modal framework to extract complementary information from videos.
We adopt RGB images for appearance, optical flow for motion, and depth maps for image structure.
We conduct experiments on the Charades-STA and ActivityNet Captions datasets, and show that the proposed method performs favorably against state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-12T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.