論文の概要: Exploring Large Language Models for Hate Speech Detection in Rioplatense Spanish
- arxiv url: http://arxiv.org/abs/2410.12174v1
- Date: Wed, 16 Oct 2024 02:32:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:53.829587
- Title: Exploring Large Language Models for Hate Speech Detection in Rioplatense Spanish
- Title(参考訳): リオプラテンセスペイン語におけるヘイトスピーチ検出のための大規模言語モデルの検討
- Authors: Juan Manuel Pérez, Paula Miguel, Viviana Cotik,
- Abstract要約: ヘイトスピーチ検出は多くの言語変種、スラング、スラー、表現モダリティ、文化的ニュアンスを扱う。
本研究では,リオプラテンセ・スペイン語のヘイトスピーチ検出における大規模言語モデルの性能について,簡単な解析を行った。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License:
- Abstract: Hate speech detection deals with many language variants, slang, slurs, expression modalities, and cultural nuances. This outlines the importance of working with specific corpora, when addressing hate speech within the scope of Natural Language Processing, recently revolutionized by the irruption of Large Language Models. This work presents a brief analysis of the performance of large language models in the detection of Hate Speech for Rioplatense Spanish. We performed classification experiments leveraging chain-of-thought reasoning with ChatGPT 3.5, Mixtral, and Aya, comparing their results with those of a state-of-the-art BERT classifier. These experiments outline that, even if large language models show a lower precision compared to the fine-tuned BERT classifier and, in some cases, they find hard-to-get slurs or colloquialisms, they still are sensitive to highly nuanced cases (particularly, homophobic/transphobic hate speech). We make our code and models publicly available for future research.
- Abstract(参考訳): ヘイトスピーチ検出は多くの言語変種、スラング、スラー、表現モダリティ、文化的ニュアンスを扱う。
これは、自然言語処理の範囲内でヘイトスピーチに対処する際、特定のコーパスを扱うことの重要性を概説する。
本研究では,リオプラテンセ・スペイン語のヘイトスピーチ検出における大規模言語モデルの性能について,簡単な解析を行った。
また,ChatGPT 3.5,Mixtral,Ayaを用いたチェーン・オブ・シント推論を用いた分類実験を行い,その結果を最先端のBERT分類器と比較した。
これらの実験は、たとえ大きな言語モデルが細調整されたBERT分類器よりも精度が低く、場合によっては、難解なスラリーや口語主義を見つけるとしても、高ニュアンスなケース(特にホモホビア/トランスホビアヘイトスピーチ)に敏感であることを示している。
将来の研究のために、コードとモデルを公開しています。
関連論文リスト
- TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
カスケード方式で多様なデータセットを活用する新しいモデルフレームワークTransVIPを提案する。
本稿では、話者の音声特性と、翻訳過程における音源音声からの等時性を維持するために、2つの分離エンコーダを提案する。
フランス語と英語のペアに関する実験により、我々のモデルは、現在最先端の音声音声翻訳モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-28T04:11:37Z) - Evaluating ChatGPT's Performance for Multilingual and Emoji-based Hate
Speech Detection [4.809236881780707]
ChatGPTのような大規模言語モデルは、ヘイトスピーチ検出など、いくつかのタスクを実行する上で大きな可能性を最近示した。
本研究では,ChatGPTモデルの長所と短所を,11言語にわたるヘッジ音声の粒度レベルで評価することを目的とした。
論文 参考訳(メタデータ) (2023-05-22T17:36:58Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - Multilingual Auxiliary Tasks Training: Bridging the Gap between
Languages for Zero-Shot Transfer of Hate Speech Detection Models [3.97478982737167]
副タスクの微調整によって得られる言語間知識プロキシにより、ヘイトスピーチ検出モデルがどのような恩恵を受けるかを示す。
本稿では,言語間のヘイトスピーチ検出モデルのゼロショット転送を改善するために,多言語補助タスクの訓練を提案する。
論文 参考訳(メタデータ) (2022-10-24T08:26:51Z) - Highly Generalizable Models for Multilingual Hate Speech Detection [0.0]
ヘイトスピーチ検出は過去10年で重要な研究課題となっている。
我々は11言語からなるデータセットをコンパイルし、組み合わせたデータとバイナリラベル(ヘイトスピーチかヘイトスピーチでないか)を解析することで、異なる解決を行う。
多言語-トレイン型モノリンガルテスト,モノリンガルトレイン型モノリンガルテスト,言語-家族型モノリンガルテストのシナリオである。
論文 参考訳(メタデータ) (2022-01-27T03:09:38Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Cross-lingual hate speech detection based on multilingual
domain-specific word embeddings [4.769747792846004]
トランスファーラーニングの視点から多言語のヘイトスピーチ検出の課題に取り組むことを提案する。
私たちの目標は、ある特定の言語の知識が他の言語の分類に使用できるかどうかを判断することです。
単純かつ特定された多言語ヘイト表現を用いることで分類結果が向上することを示す。
論文 参考訳(メタデータ) (2021-04-30T02:24:50Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。