論文の概要: LPUF-AuthNet: A Lightweight PUF-Based IoT Authentication via Tandem Neural Networks and Split Learning
- arxiv url: http://arxiv.org/abs/2410.12190v1
- Date: Wed, 16 Oct 2024 03:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:30.760872
- Title: LPUF-AuthNet: A Lightweight PUF-Based IoT Authentication via Tandem Neural Networks and Split Learning
- Title(参考訳): LPUF-AuthNet:タンデムニューラルネットワークと分割学習による軽量PUFベースのIoT認証
- Authors: Brahim Mefgouda, Raviha Khan, Omar Alhussein, Hani Saleh, Hossien B. Eldeeb, Anshul Pandey, Sami Muhaidat,
- Abstract要約: IoT(Internet of Things)は2025年までに全世界で75億以上のデバイスを接続する計画だ。
従来の暗号手法は、IoTデバイスの制約に悩まされることが多い。
本稿では、物理的非拘束機能(PUF)を堅牢なセキュリティソリューションとみなす。
提案手法では,タンデムニューラルネットワーク(TNN)とスプリットラーニング(SL)パラダイムを組み合わせた,LPUF-AuthNetと呼ばれる軽量PUF機構を提案する。
- 参考スコア(独自算出の注目度): 2.37507453143459
- License:
- Abstract: By 2025, the internet of things (IoT) is projected to connect over 75 billion devices globally, fundamentally altering how we interact with our environments in both urban and rural settings. However, IoT device security remains challenging, particularly in the authentication process. Traditional cryptographic methods often struggle with the constraints of IoT devices, such as limited computational power and storage. This paper considers physical unclonable functions (PUFs) as robust security solutions, utilizing their inherent physical uniqueness to authenticate devices securely. However, traditional PUF systems are vulnerable to machine learning (ML) attacks and burdened by large datasets. Our proposed solution introduces a lightweight PUF mechanism, called LPUF-AuthNet, combining tandem neural networks (TNN) with a split learning (SL) paradigm. The proposed approach provides scalability, supports mutual authentication, and enhances security by resisting various types of attacks, paving the way for secure integration into future 6G technologies.
- Abstract(参考訳): 2025年までにモノのインターネット(IoT)は、世界75億以上のデバイスを接続し、都市と農村の両方の環境で環境と対話する方法を根本的に変えることを計画している。
しかし、IoTデバイスのセキュリティは、特に認証プロセスにおいて、依然として困難である。
従来の暗号手法は、計算能力やストレージの制限など、IoTデバイスの制約に悩まされることが多い。
本稿では,デバイスをセキュアに認証するために,その物理的特異性を利用した堅牢なセキュリティソリューションとして,物理的非拘束機能(PUF)を考察する。
しかし、従来のPUFシステムは機械学習(ML)攻撃に弱いため、大規模なデータセットによって負担を受ける。
提案手法では,タンデムニューラルネットワーク(TNN)とスプリットラーニング(SL)パラダイムを組み合わせた,LPUF-AuthNetと呼ばれる軽量PUF機構を提案する。
提案手法はスケーラビリティを提供し、相互認証をサポートし、様々な種類の攻撃に抵抗することでセキュリティを強化し、将来の6G技術へのセキュアな統合の道を開く。
関連論文リスト
- FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
本研究は,IoT環境におけるデータプライバシとセキュリティの向上を目的とした,高度な学習(FL)フレームワークを提案する。
我々は、分散属性ベースの暗号化(DABE)、同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、技術を統合する。
従来のFLとは異なり、当社のフレームワークはIoTデバイス上で、セキュアで分散化された認証と暗号化を可能にする。
論文 参考訳(メタデータ) (2024-10-26T19:30:53Z) - Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and
Security in IoT Devices [2.28438857884398]
物理的に非閉塞関数(PUF)は、固有のハードウェアのバリエーションからユニークな暗号鍵を生成する。
Arbiter PUFs (APUFs) や XOR Arbiter PUFs (XOR-PUFs) のような従来のPUFは、機械学習(ML)や信頼性ベースの攻撃の影響を受けやすい。
本稿では,信頼性を高めるための事前選択戦略を取り入れたCDC-XPUF設計を提案し,新しい軽量アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-09-26T14:50:20Z) - zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms [0.0]
本稿では,IoT(Internet of Things)エコシステムのセキュリティ向上のための新しいアプローチとして,zk-IoTフレームワークを紹介する。
我々のフレームワークは、潜在的に侵害されたIoTデバイスにおけるファームウェアの実行とデータ処理の完全性を保証する。
論文 参考訳(メタデータ) (2024-02-13T09:34:23Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - A Lightweight and Secure PUF-Based Authentication and Key-exchange Protocol for IoT Devices [0.0]
デバイス認証とキー交換はモノのインターネットにとって大きな課題である。
PUFは、PKIやIBEのような典型的な高度な暗号システムの代わりに、実用的で経済的なセキュリティメカニズムを提供するようだ。
認証を行うために,IoTデバイスがサーバと通信するための連続的なアクティブインターネット接続を必要としないシステムを提案する。
論文 参考訳(メタデータ) (2023-11-07T15:42:14Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
組織のネットワークに対する攻撃のリスクは、セキュリティの低いIoTデバイスの使用の増加によって増大している。
この脅威に対処し、ネットワークを保護するために、組織は通常、ホワイトリストのIoTデバイスのみをネットワーク上で許可するセキュリティポリシを実装します。
本研究では、ネットワーク上で許可されたIoTデバイスの自動識別のためのネットワーク通信にディープラーニングを適用した。
論文 参考訳(メタデータ) (2023-03-02T13:44:58Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
本稿では,流通戦略の再考を通じて協調的深層推論の安全性を目標とするアプローチを提案する。
我々は、この手法を最適化として定式化し、コ推論のレイテンシとプライバシーレベルのデータのトレードオフを確立する。
論文 参考訳(メタデータ) (2022-08-27T14:50:00Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。