論文の概要: zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms
- arxiv url: http://arxiv.org/abs/2402.08322v2
- Date: Mon, 19 Feb 2024 05:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 11:19:24.147877
- Title: zk-IoT: Securing the Internet of Things with Zero-Knowledge Proofs on Blockchain Platforms
- Title(参考訳): zk-IoT: ブロックチェーンプラットフォーム上のゼロ知識証明によるモノのインターネットのセキュア化
- Authors: Gholamreza Ramezan, Ehsan Meamari,
- Abstract要約: 本稿では,IoT(Internet of Things)エコシステムのセキュリティ向上のための新しいアプローチとして,zk-IoTフレームワークを紹介する。
我々のフレームワークは、潜在的に侵害されたIoTデバイスにおけるファームウェアの実行とデータ処理の完全性を保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces the zk-IoT framework, a novel approach to enhancing the security of Internet of Things (IoT) ecosystems through the use of Zero-Knowledge Proofs (ZKPs) on blockchain platforms. Our framework ensures the integrity of firmware execution and data processing in potentially compromised IoT devices. By leveraging the concept of ZKP, we establish a trust layer that facilitates secure, autonomous communication between IoT devices in environments where devices may not inherently trust each other. The framework includes zk-Devices, which utilize functional commitment to generate proofs for executed programs, and service contracts for encoding interaction logic among devices. It also utilizes a blockchain layer and a relayer as a ZKP storage and data communication protocol, respectively. Our experiments demonstrate that proof generation, reading, and verification take approximately 694, 5078, and 19 milliseconds in our system setup, respectively. These timings meet the practical requirements for IoT device communication, demonstrating the feasibility and efficiency of our solution. The zk-IoT framework represents a significant advancement in the realm of IoT security, paving the way for reliable and scalable IoT networks across various applications, such as smart city infrastructures, healthcare systems, and industrial automation.
- Abstract(参考訳): 本稿では,Zero-Knowledge Proofs(ZKP)をブロックチェーンプラットフォーム上で使用することにより,モノのインターネット(IoT)エコシステムのセキュリティを強化する,新たなアプローチであるzk-IoTフレームワークを紹介する。
我々のフレームワークは、潜在的に侵害されたIoTデバイスにおけるファームウェアの実行とデータ処理の完全性を保証する。
ZKPの概念を活用することで、デバイスが本質的に相互に信頼できない環境において、IoTデバイス間のセキュアで自律的な通信を容易にする信頼層を確立します。
このフレームワークには、実行プログラムの証明を生成するための機能的なコミットメントを利用するzk-Devicesと、デバイス間のインタラクションロジックをエンコードするサービスコントラクトが含まれている。
また、ブロックチェーン層とリレーをそれぞれZKPストレージとデータ通信プロトコルとして使用する。
実験では, システム設定のそれぞれ約694, 5078, 19ミリ秒の証明生成, 読み出し, 検証を行う。
これらのタイミングは、IoTデバイス通信の実践的な要件を満たし、ソリューションの実現可能性と効率を実証します。
zk-IoTフレームワークはIoTセキュリティの領域において,スマートシティインフラストラクチャやヘルスケアシステム,産業自動化など,さまざまなアプリケーションにまたがる信頼性とスケーラブルなIoTネットワークの実現という,大きな進歩を示している。
関連論文リスト
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoTエコシステムは、モーション、サーマル、ジオロケーション、イメージング、ディープ、センサー、オーディオといった、現実世界のモダリティの豊富なソースを提供する。
機械学習は、IoTデータを大規模に自動的に処理する豊富な機会を提供する。
IoTエコシステムに適した,オープンソースの大規模マルチセンサ言語モデルであるIoT-LMを紹介します。
論文 参考訳(メタデータ) (2024-07-13T08:20:37Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Lightweight and Secure PUF-Based Authentication and Key-exchange Protocol for IoT Devices [0.0]
デバイス認証とキー交換はモノのインターネットにとって大きな課題である。
PUFは、PKIやIBEのような典型的な高度な暗号システムの代わりに、実用的で経済的なセキュリティメカニズムを提供するようだ。
認証を行うために,IoTデバイスがサーバと通信するための連続的なアクティブインターネット接続を必要としないシステムを提案する。
論文 参考訳(メタデータ) (2023-11-07T15:42:14Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
我々は、リソース制限されたTrusted OSのセキュリティを検証するための、最初の状態認識ファジィフレームワークであるSyzTrustを紹介する。
SyzTrustはハードウェア支援フレームワークを採用し、IoTデバイス上でTrusted OSを直接ファジングできるようにする。
我々は、Samsung、Tsinglink Cloud、Ali Cloudの3つの主要なベンダーからSyzTrust on Trusted OSを評価した。
論文 参考訳(メタデータ) (2023-09-26T08:11:38Z) - Technical Report-IoT Devices Proximity Authentication In Ad Hoc Network
Environment [0.0]
Internet of Things(IoT)は、物理的デバイスがデータを接続し交換することを可能にする分散通信技術システムである。
IoTデバイスへの認証は、攻撃者によるネガティブな影響を防ぐための第一歩であるため、不可欠である。
本稿では、IoTデバイス環境にあるものに基づいて、IoTデバイス認証方式を実装した。
論文 参考訳(メタデータ) (2022-10-01T03:07:42Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z) - Blockchain-based Smart-IoT Trust Zone Measurement Architecture [1.5749416770494706]
IoT(Internet of Things)は大きな注目を集め、私たちの環境の中心的な側面になっています。
本稿では,外部ネットワークへの信頼感を提供するIoTセットアップにおける行動モニタを提案する。
さらに、ブロックチェーン上のアプリケーションやデータに対してセキュアな実行環境を提供するために、Trusted Execution Technology(Intel SGX)も組み込んでいます。
論文 参考訳(メタデータ) (2020-01-08T03:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。