Global Censored Quantile Random Forest
- URL: http://arxiv.org/abs/2410.12209v1
- Date: Wed, 16 Oct 2024 04:05:01 GMT
- Title: Global Censored Quantile Random Forest
- Authors: Siyu Zhou, Limin Peng,
- Abstract summary: We propose a Global Censored Quantile Random Forest (GCQRF) for predicting a conditional quantile process on data subject to right censoring.
We quantify the prediction process' variation without assuming an infinite forest and establish its weak convergence.
We demonstrate the superior predictive accuracy of the proposed method over a number of existing alternatives.
- Score: 2.8413279736755017
- License:
- Abstract: In recent years, censored quantile regression has enjoyed an increasing popularity for survival analysis while many existing works rely on linearity assumptions. In this work, we propose a Global Censored Quantile Random Forest (GCQRF) for predicting a conditional quantile process on data subject to right censoring, a forest-based flexible, competitive method able to capture complex nonlinear relationships. Taking into account the randomness in trees and connecting the proposed method to a randomized incomplete infinite degree U-process (IDUP), we quantify the prediction process' variation without assuming an infinite forest and establish its weak convergence. Moreover, feature importance ranking measures based on out-of-sample predictive accuracy are proposed. We demonstrate the superior predictive accuracy of the proposed method over a number of existing alternatives and illustrate the use of the proposed importance ranking measures on both simulated and real data.
Related papers
- Quantile Regression using Random Forest Proximities [0.9423257767158634]
Quantile regression forests estimate the entire conditional distribution of the target variable with a single model.
We show that using quantile regression using Random Forest proximities demonstrates superior performance in approximating conditional target distributions and prediction intervals to the original version of QRF.
arXiv Detail & Related papers (2024-08-05T10:02:33Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Inference with Mondrian Random Forests [6.97762648094816]
We give precise bias and variance characterizations, along with a Berry-Esseen-type central limit theorem, for the Mondrian random forest regression estimator.
We present valid statistical inference methods for the unknown regression function.
Efficient and implementable algorithms are devised for both batch and online learning settings.
arXiv Detail & Related papers (2023-10-15T01:41:42Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - On Variance Estimation of Random Forests [0.0]
This paper develops an unbiased variance estimator based on incomplete U-statistics.
We show that our estimators enjoy lower bias and more accurate confidence interval coverage without additional computational costs.
arXiv Detail & Related papers (2022-02-18T03:35:47Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.
Our first method uses these weights as the local average to solve the conditional Fr'echet mean.
Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Censored Quantile Regression Forest [81.9098291337097]
We develop a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring.
The proposed procedure named it censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption.
arXiv Detail & Related papers (2020-01-08T23:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.