Quantile Regression using Random Forest Proximities
- URL: http://arxiv.org/abs/2408.02355v1
- Date: Mon, 5 Aug 2024 10:02:33 GMT
- Title: Quantile Regression using Random Forest Proximities
- Authors: Mingshu Li, Bhaskarjit Sarmah, Dhruv Desai, Joshua Rosaler, Snigdha Bhagat, Philip Sommer, Dhagash Mehta,
- Abstract summary: Quantile regression forests estimate the entire conditional distribution of the target variable with a single model.
We show that using quantile regression using Random Forest proximities demonstrates superior performance in approximating conditional target distributions and prediction intervals to the original version of QRF.
- Score: 0.9423257767158634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the dynamic nature of financial markets, maintaining models that produce precise predictions over time is difficult. Often the goal isn't just point prediction but determining uncertainty. Quantifying uncertainty, especially the aleatoric uncertainty due to the unpredictable nature of market drivers, helps investors understand varying risk levels. Recently, quantile regression forests (QRF) have emerged as a promising solution: Unlike most basic quantile regression methods that need separate models for each quantile, quantile regression forests estimate the entire conditional distribution of the target variable with a single model, while retaining all the salient features of a typical random forest. We introduce a novel approach to compute quantile regressions from random forests that leverages the proximity (i.e., distance metric) learned by the model and infers the conditional distribution of the target variable. We evaluate the proposed methodology using publicly available datasets and then apply it towards the problem of forecasting the average daily volume of corporate bonds. We show that using quantile regression using Random Forest proximities demonstrates superior performance in approximating conditional target distributions and prediction intervals to the original version of QRF. We also demonstrate that the proposed framework is significantly more computationally efficient than traditional approaches to quantile regressions.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Global Censored Quantile Random Forest [2.8413279736755017]
We propose a Global Censored Quantile Random Forest (GCQRF) for predicting a conditional quantile process on data subject to right censoring.
We quantify the prediction process' variation without assuming an infinite forest and establish its weak convergence.
We demonstrate the superior predictive accuracy of the proposed method over a number of existing alternatives.
arXiv Detail & Related papers (2024-10-16T04:05:01Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - Lazy Estimation of Variable Importance for Large Neural Networks [22.95405462638975]
We propose a fast and flexible method for approximating the reduced model with important inferential guarantees.
We demonstrate our method is fast and accurate under several data-generating regimes, and we demonstrate its real-world applicability on a seasonal climate forecasting example.
arXiv Detail & Related papers (2022-07-19T06:28:17Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Universal Off-Policy Evaluation [64.02853483874334]
We take the first steps towards a universal off-policy estimator (UnO)
We use UnO for estimating and simultaneously bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and the entire cumulative distribution of returns.
arXiv Detail & Related papers (2021-04-26T18:54:31Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - Regularization Strategies for Quantile Regression [8.232258589877942]
We show that minimizing an expected pinball loss over a continuous distribution of quantiles is a good regularizer even when only predicting a specific quantile.
We show that lattice models enable regularizing the predicted distribution to a location-scale family.
arXiv Detail & Related papers (2021-02-09T21:10:35Z) - Censored Quantile Regression Forest [81.9098291337097]
We develop a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring.
The proposed procedure named it censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption.
arXiv Detail & Related papers (2020-01-08T23:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.