Order-aware Interactive Segmentation
- URL: http://arxiv.org/abs/2410.12214v2
- Date: Thu, 17 Oct 2024 16:16:33 GMT
- Title: Order-aware Interactive Segmentation
- Authors: Bin Wang, Anwesa Choudhuri, Meng Zheng, Zhongpai Gao, Benjamin Planche, Andong Deng, Qin Liu, Terrence Chen, Ulas Bagci, Ziyan Wu,
- Abstract summary: OIS: order-aware interactive segmentation, where we explicitly encode the relative depth between objects into order maps.
We introduce a novel order-aware attention, where the order maps seamlessly guide the user interactions (in the form of clicks) to attend to the image features.
Our approach allows both dense and sparse integration of user clicks, enhancing both accuracy and efficiency as compared to prior works.
- Score: 29.695857327102647
- License:
- Abstract: Interactive segmentation aims to accurately segment target objects with minimal user interactions. However, current methods often fail to accurately separate target objects from the background, due to a limited understanding of order, the relative depth between objects in a scene. To address this issue, we propose OIS: order-aware interactive segmentation, where we explicitly encode the relative depth between objects into order maps. We introduce a novel order-aware attention, where the order maps seamlessly guide the user interactions (in the form of clicks) to attend to the image features. We further present an object-aware attention module to incorporate a strong object-level understanding to better differentiate objects with similar order. Our approach allows both dense and sparse integration of user clicks, enhancing both accuracy and efficiency as compared to prior works. Experimental results demonstrate that OIS achieves state-of-the-art performance, improving mIoU after one click by 7.61 on the HQSeg44K dataset and 1.32 on the DAVIS dataset as compared to the previous state-of-the-art SegNext, while also doubling inference speed compared to current leading methods. The project page is https://ukaukaaaa.github.io/projects/OIS/index.html
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - ORMNet: Object-centric Relationship Modeling for Egocentric Hand-object Segmentation [14.765419467710812]
Egocentric hand-object segmentation (EgoHOS) is a promising new task aiming at segmenting hands and interacting objects in egocentric images.
This paper proposes a novel Object-centric Relationship Modeling Network (ORMNet) to fulfill end-to-end and effective EgoHOS.
arXiv Detail & Related papers (2024-07-08T03:17:10Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
Existing methods rely on frame-based detectors to locate interacting objects.
We propose to leverage hand-object interaction to track interactive objects.
Our proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-06T09:09:17Z) - AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation [32.63772366307106]
We introduce AGILE3D, an efficient, attention-based model that supports simultaneous segmentation of multiple 3D objects.
Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries and the 3D scene.
In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art.
arXiv Detail & Related papers (2023-06-01T17:59:10Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
We present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features.
Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment.
arXiv Detail & Related papers (2022-12-27T09:13:19Z) - Look Before You Match: Instance Understanding Matters in Video Object
Segmentation [114.57723592870097]
In this paper, we argue that instance matters in video object segmentation (VOS)
We present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank.
We employ well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-auged matching is further performed.
arXiv Detail & Related papers (2022-12-13T18:59:59Z) - Interacting Hand-Object Pose Estimation via Dense Mutual Attention [97.26400229871888]
3D hand-object pose estimation is the key to the success of many computer vision applications.
We propose a novel dense mutual attention mechanism that is able to model fine-grained dependencies between the hand and the object.
Our method is able to produce physically plausible poses with high quality and real-time inference speed.
arXiv Detail & Related papers (2022-11-16T10:01:33Z) - Salient Object Ranking with Position-Preserved Attention [44.94722064885407]
We study the Salient Object Ranking (SOR) task, which manages to assign a ranking order of each detected object according to its visual saliency.
We propose the first end-to-end framework of the SOR task and solve it in a multi-task learning fashion.
We also introduce a Position-Preserved Attention (PPA) module tailored for the SOR branch.
arXiv Detail & Related papers (2021-06-09T13:00:05Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Deep Learning Approach to Object Affordance Segmentation [31.221897360610114]
We design an autoencoder that infers pixel-wise affordance labels in both videos and static images.
Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism.
We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF.
arXiv Detail & Related papers (2020-04-18T15:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.