Causally-Aware Unsupervised Feature Selection Learning
- URL: http://arxiv.org/abs/2410.12224v1
- Date: Wed, 16 Oct 2024 04:41:38 GMT
- Title: Causally-Aware Unsupervised Feature Selection Learning
- Authors: Zongxin Shen, Yanyong Huang, Minbo Ma, Tianrui Li,
- Abstract summary: Unsupervised feature selection (UFS) has recently gained attention for its effectiveness in processing unlabeled high-dimensional data.
Previous graph-based methods fail to account for the differing impacts of non-causal and causal features in constructing the similarity graph.
A novel UFS method, called Causally-Aware UnSupErvised Feature Selection learning (CAUSE-FS), is proposed.
- Score: 3.8734875101038706
- License:
- Abstract: Unsupervised feature selection (UFS) has recently gained attention for its effectiveness in processing unlabeled high-dimensional data. However, existing methods overlook the intrinsic causal mechanisms within the data, resulting in the selection of irrelevant features and poor interpretability. Additionally, previous graph-based methods fail to account for the differing impacts of non-causal and causal features in constructing the similarity graph, which leads to false links in the generated graph. To address these issues, a novel UFS method, called Causally-Aware UnSupErvised Feature Selection learning (CAUSE-FS), is proposed. CAUSE-FS introduces a novel causal regularizer that reweights samples to balance the confounding distribution of each treatment feature. This regularizer is subsequently integrated into a generalized unsupervised spectral regression model to mitigate spurious associations between features and clustering labels, thus achieving causal feature selection. Furthermore, CAUSE-FS employs causality-guided hierarchical clustering to partition features with varying causal contributions into multiple granularities. By integrating similarity graphs learned adaptively at different granularities, CAUSE-FS increases the importance of causal features when constructing the fused similarity graph to capture the reliable local structure of data. Extensive experimental results demonstrate the superiority of CAUSE-FS over state-of-the-art methods, with its interpretability further validated through feature visualization.
Related papers
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.
CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.
We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
We propose a dynamic causal space for DAG structure learning, coined CASPER.
It integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG.
arXiv Detail & Related papers (2023-06-05T12:20:40Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Decorrelate Irrelevant, Purify Relevant: Overcome Textual Spurious
Correlations from a Feature Perspective [47.10907370311025]
Natural language understanding (NLU) models tend to rely on spurious correlations (emphi.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones.
Most of the existing debiasing methods often identify and weaken these samples with biased features.
Down-weighting these samples obstructs the model in learning from the non-biased parts of these samples.
We propose to eliminate spurious correlations in a fine-grained manner from a feature space perspective.
arXiv Detail & Related papers (2022-02-16T13:23:14Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
We introduce the R package for causal discovery and causal effect estimation from observational data.
Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, the number of variables in the dataset.
We then illustrate the main functions and algorithms on both real and simulated datasets.
arXiv Detail & Related papers (2022-01-28T09:30:32Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Causal network learning with non-invertible functional relationships [7.845605663563046]
Several recent results have established the identifiability of causal DAGs with non-Gaussian and/or nonlinear structural equation models (SEMs)
In this paper, we focus on nonlinear SEMs defined by non-invertible functions, which exist in many data domains.
We develop a method to incorporate this test in structure learning of DAGs that contain both linear and nonlinear causal relations.
arXiv Detail & Related papers (2020-04-20T21:32:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.