論文の概要: ShapefileGPT: A Multi-Agent Large Language Model Framework for Automated Shapefile Processing
- arxiv url: http://arxiv.org/abs/2410.12376v2
- Date: Wed, 23 Oct 2024 12:58:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:52:58.513341
- Title: ShapefileGPT: A Multi-Agent Large Language Model Framework for Automated Shapefile Processing
- Title(参考訳): ShapefileGPT: 自動形状ファイル処理のための多言語大言語モデルフレームワーク
- Authors: Qingming Lin, Rui Hu, Huaxia Li, Sensen Wu, Yadong Li, Kai Fang, Hailin Feng, Zhenhong Du, Liuchang Xu,
- Abstract要約: 大規模言語モデル(LLM)を利用した革新的なフレームワークであるShapefileGPTを提案する。
ShapefileGPTはマルチエージェントアーキテクチャを使用し、プランナーエージェントがタスクの分解と監督を担当し、ワーカーエージェントがタスクを実行する。
評価のために,幾何演算や空間的クエリといったカテゴリのタスクを含む,権威教科書に基づくベンチマークデータセットを開発した。
- 参考スコア(独自算出の注目度): 8.594821438139187
- License:
- Abstract: Vector data is one of the two core data structures in geographic information science (GIS), essential for accurately storing and representing geospatial information. Shapefile, the most widely used vector data format, has become the industry standard supported by all major geographic information systems. However, processing this data typically requires specialized GIS knowledge and skills, creating a barrier for researchers from other fields and impeding interdisciplinary research in spatial data analysis. Moreover, while large language models (LLMs) have made significant advancements in natural language processing and task automation, they still face challenges in handling the complex spatial and topological relationships inherent in GIS vector data. To address these challenges, we propose ShapefileGPT, an innovative framework powered by LLMs, specifically designed to automate Shapefile tasks. ShapefileGPT utilizes a multi-agent architecture, in which the planner agent is responsible for task decomposition and supervision, while the worker agent executes the tasks. We developed a specialized function library for handling Shapefiles and provided comprehensive API documentation, enabling the worker agent to operate Shapefiles efficiently through function calling. For evaluation, we developed a benchmark dataset based on authoritative textbooks, encompassing tasks in categories such as geometric operations and spatial queries. ShapefileGPT achieved a task success rate of 95.24%, outperforming the GPT series models. In comparison to traditional LLMs, ShapefileGPT effectively handles complex vector data analysis tasks, overcoming the limitations of traditional LLMs in spatial analysis. This breakthrough opens new pathways for advancing automation and intelligence in the GIS field, with significant potential in interdisciplinary data analysis and application contexts.
- Abstract(参考訳): ベクトルデータは地理情報科学(GIS)における2つのコアデータ構造のうちの1つであり、地理空間情報の正確な保存と表現に不可欠である。
最も広く使われているベクトルデータフォーマットであるShapefileは、すべての主要な地理情報システムでサポートされている業界標準となっている。
しかし、このデータを処理するには、通常、専門的なGISの知識とスキルが必要であり、他の分野の研究者にとって障壁となり、空間データ分析における学際的な研究を妨げる。
さらに、大規模言語モデル(LLM)は自然言語処理やタスク自動化において大きな進歩を遂げてきたが、GISベクトルデータに固有の複雑な空間的およびトポロジ的関係を扱う上で、依然として課題に直面している。
これらの課題に対処するために,我々は,シェープファイルタスクの自動化に特化して設計された,LLMを活用した革新的なフレームワークであるShapefileGPTを提案する。
ShapefileGPTはマルチエージェントアーキテクチャを使用し、プランナーエージェントがタスクの分解と監督を担当し、ワーカーエージェントがタスクを実行する。
我々は、Shapefileを扱うための特殊な関数ライブラリを開発し、Workerエージェントが関数呼び出しを通じてShapefileを効率的に操作できるように、APIドキュメントを包括的に提供した。
評価のために,幾何演算や空間的クエリといったカテゴリのタスクを含む,権威教科書に基づくベンチマークデータセットを開発した。
シェープファイルGPTは95.24%のタスク成功率を獲得し、GPTシリーズモデルを上回った。
従来のLLMと比較して、ShapefileGPTは複雑なベクトルデータ解析タスクを効果的に処理し、空間解析における従来のLLMの限界を克服する。
このブレークスルーによって、GIS分野における自動化とインテリジェンスを前進させる新たな経路が開かれ、学際的なデータ分析とアプリケーションコンテキストにおいて大きな可能性を秘めている。
関連論文リスト
- GIS Copilot: Towards an Autonomous GIS Agent for Spatial Analysis [0.0]
GIS Copilot" はGISユーザが自然言語コマンドを使ってQGISと対話して空間分析を行うことを可能にする。
評価の結果,GISコパイロットはGIS操作の自動化に強い可能性を示し,ツールの選択やコード生成において高い成功率を示した。
本研究は,非専門家が地理空間分析を最小限の専門知識で行うための経路を提供する,自律型GISの新たなビジョンに寄与する。
論文 参考訳(メタデータ) (2024-11-05T15:53:59Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Geo-FuB: A Method for Constructing an Operator-Function Knowledge Base for Geospatial Code Generation Tasks Using Large Language Models [0.5242869847419834]
本研究では,地理空間記述のセマンティクスを活用して,そのような知識基盤を構築するためのフレームワークを提案する。
サンプルの知識ベースであるGeo-FuBは154,075のGoogle Earth Engineスクリプトで構築されており、GitHubで公開されている。
論文 参考訳(メタデータ) (2024-10-28T12:50:27Z) - An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
大規模言語モデル(LLM)は、データサイエンスコード生成タスクで使われている。
複雑なデータ構造と空間的制約を組み込むのが困難であるため,空間空間データ処理への応用は困難である。
ジオアジェント(GeoAgent)は,LLMが地理空間データ処理をより効率的に処理できるように設計された対話型フレームワークである。
論文 参考訳(メタデータ) (2024-10-24T14:47:25Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - An Autonomous GIS Agent Framework for Geospatial Data Retrieval [0.0]
本研究では,必要な地理空間データを検索できる自律型GISエージェントフレームワークを提案する。
我々はQGISプラグイン(GeoData Retrieve Agent)とPythonプログラムとしてリリースされたフレームワークに基づいたプロトタイプエージェントを開発した。
実験の結果は、OpenStreetMap、行政境界、米国国勢調査局の人口統計データなど、さまざまなソースからデータを取得する能力を示している。
論文 参考訳(メタデータ) (2024-07-13T14:23:57Z) - GeoGPT: Understanding and Processing Geospatial Tasks through An
Autonomous GPT [6.618846295332767]
GISの意思決定者は、空間的タスクを解決するために、一連の空間的アルゴリズムと演算を組み合わせる必要がある。
我々は,地理空間データ収集,処理,解析を自律的に行うことのできるGeoGPTと呼ばれる新しいフレームワークを開発した。
論文 参考訳(メタデータ) (2023-07-16T03:03:59Z) - MGeo: Multi-Modal Geographic Pre-Training Method [49.78466122982627]
マルチモーダルジオグラフィック言語モデル(MGeo)を提案する。
MGeoはGCを新しいモダリティとして表現し、正確なクエリ-POIマッチングのためのマルチモーダル相関を完全に抽出することができる。
提案するマルチモーダル事前学習法は,汎用PTMのクエリ-POIマッチング能力を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-11T03:05:12Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
知識集約型言語タスク(KILT)のベンチマークを示す。
KILTのすべてのタスクはウィキペディアのスナップショットと同じだ。
共有密度ベクトル指数とSeq2seqモデルとの結合が強いベースラインであることが分かる。
論文 参考訳(メタデータ) (2020-09-04T15:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。