Intent Classification on Low-Resource Languages with Query Similarity Search
- URL: http://arxiv.org/abs/2505.18241v1
- Date: Fri, 23 May 2025 15:11:12 GMT
- Title: Intent Classification on Low-Resource Languages with Query Similarity Search
- Authors: Arjun Bhalla, Qi Huang,
- Abstract summary: We propose casting intent classification as a query similarity search problem.<n>We use previous example queries to define an intent, and a query similarity method to classify an incoming query based on the labels of its most similar queries in latent space.<n>We are able to achieve reasonable intent classification performance for queries in low-resource languages in a zero-shot setting.
- Score: 0.49394382134960696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intent classification is an important component of a functional Information Retrieval ecosystem. Many current approaches to intent classification, typically framed as a classification problem, can be problematic as intents are often hard to define and thus data can be difficult and expensive to annotate. The problem is exacerbated when we need to extend the intent classification system to support multiple and in particular low-resource languages. To address this, we propose casting intent classification as a query similarity search problem - we use previous example queries to define an intent, and a query similarity method to classify an incoming query based on the labels of its most similar queries in latent space. With the proposed approach, we are able to achieve reasonable intent classification performance for queries in low-resource languages in a zero-shot setting.
Related papers
- Dynamic Label Name Refinement for Few-Shot Dialogue Intent Classification [10.850826520563967]
We propose a novel approach to few-shot dialogue intent classification through in-context learning.<n>Our method retrieves relevant examples for a test input from the training set.<n>We leverage a large language model to dynamically refine intent labels based on semantic understanding.
arXiv Detail & Related papers (2024-12-20T06:53:57Z) - QUIDS: Query Intent Generation via Dual Space Modeling [12.572815037915348]
We propose a dual-space model that uses semantic relevance and irrelevance information in the returned documents to explain the understanding of the query intent.
Our methods produce high-quality query intent descriptions, outperforming existing methods for this task, as well as state-of-the-art query-based summarization methods.
arXiv Detail & Related papers (2024-10-16T09:28:58Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
We show that matching class priors correlates strongly with the oracle upper bound performance.
We also demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
arXiv Detail & Related papers (2023-09-10T10:57:41Z) - PatchMix Augmentation to Identify Causal Features in Few-shot Learning [55.64873998196191]
Few-shot learning aims to transfer knowledge learned from base with sufficient categories labelled data to novel categories with scarce known information.
We propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency.
We show that such an augmentation mechanism, different from existing ones, is able to identify the causal features.
arXiv Detail & Related papers (2022-11-29T08:41:29Z) - Out-of-Category Document Identification Using Target-Category Names as
Weak Supervision [64.671654559798]
Out-of-category detection aims to distinguish documents according to their semantic relevance to the inlier (or target) categories.
We present an out-of-category detection framework, which effectively measures how confidently each document belongs to one of the target categories.
arXiv Detail & Related papers (2021-11-24T21:01:25Z) - Few-shot Intent Classification and Slot Filling with Retrieved Examples [30.45269507626138]
We propose a span-level retrieval method that learns similar contextualized representations for spans with the same label via a novel batch-softmax objective.
Our method outperforms previous systems in various few-shot settings on the CLINC and SNIPS benchmarks.
arXiv Detail & Related papers (2021-04-12T18:50:34Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z) - Query Understanding via Intent Description Generation [75.64800976586771]
We propose a novel Query-to-Intent-Description (Q2ID) task for query understanding.
Unlike existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description.
We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task.
arXiv Detail & Related papers (2020-08-25T08:56:40Z) - Coupled intrinsic and extrinsic human language resource-based query
expansion [0.0]
We present here a query expansion framework which capitalizes on both linguistic characteristics for query constituent encoding, expansion concept extraction and concept weighting.
A thorough empirical evaluation on real-world datasets validates our approach against unigram language model, relevance model and a sequential dependence based technique.
arXiv Detail & Related papers (2020-04-23T11:22:38Z) - Don't Judge an Object by Its Context: Learning to Overcome Contextual
Bias [113.44471186752018]
Existing models often leverage co-occurrences between objects and their context to improve recognition accuracy.
This work focuses on addressing such contextual biases to improve the robustness of the learnt feature representations.
arXiv Detail & Related papers (2020-01-09T18:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.