論文の概要: Attention-Guided Perturbation for Consistency Regularization in Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.12419v1
- Date: Wed, 16 Oct 2024 10:04:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:13.130748
- Title: Attention-Guided Perturbation for Consistency Regularization in Semi-Supervised Medical Image Segmentation
- Title(参考訳): 半監督型医用画像分割におけるアテンションガイドによる一貫性の規則化
- Authors: Yuxuan Cheng, Chenxi Shao, Jie Ma, Guoliang Li,
- Abstract要約: 本稿では,医療画像セグメンテーションの文脈における半教師付き整合正則化のための注意誘導型摂動戦略を提案する。
画像と特徴レベルのモデルからの注意に基づく摂動を加えて、一貫性の正則化を実現する。
提案手法は,ACDCデータセットの90.4%のDiceスコアを含む,ベンチマークデータセットの最先端結果を7ケースシナリオで達成した。
- 参考スコア(独自算出の注目度): 14.67636369741001
- License:
- Abstract: Medical image segmentation is a pivotal step in diagnostic and therapeutic processes. However, the acquisition of high-quality annotated data is often constrained by scarcity and cost. Semi-supervised learning offers a promising approach to enhance model performance by using unlabeled data. While consistency regularization is a prevalent method in semi-supervised image segmentation, there is a dearth of research on perturbation strategies tailored for semi-supervised medical image segmentation tasks. This paper introduces an attention-guided perturbation strategy for semi-supervised consistency regularization in the context of medical image segmentation. We add the perturbation based on the attention from the model in the image and feature level to achieve consistency regularization. The method is adept at accommodating the intricate structures and high-dimensional semantics inherent in medical images, thereby enhancing the performance of semi-supervised segmentation tasks. Our method achieved state-of-the-art results on benchmark datasets, including a 90.4\% Dice score on the ACDC dataset in the 7-case scenario.
- Abstract(参考訳): 医用画像のセグメンテーションは、診断と治療の過程において重要なステップである。
しかし、高品質な注釈付きデータの取得は、しばしば不足とコストによって制限される。
半教師付き学習は、ラベルなしデータを使用することでモデルパフォーマンスを向上させるための有望なアプローチを提供する。
整合性正則化は半教師付きイメージセグメンテーションにおいて一般的な方法であるが、半教師付き医療画像セグメンテーションタスクに適した摂動戦略の研究が数多く行われている。
本稿では,医療画像セグメンテーションの文脈における半教師付き整合正則化のための注意誘導型摂動戦略を提案する。
画像と特徴レベルのモデルからの注意に基づく摂動を加えて、一貫性の正則化を実現する。
本手法は、医用画像に固有の複雑な構造と高次元意味論の調整に適しており、半教師付きセグメンテーションタスクの性能を向上させる。
提案手法は,ACDCデータセットの90.4\%のDiceスコアを含む,ベンチマークデータセットの最先端結果を7ケースシナリオで達成した。
関連論文リスト
- Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
頭蓋内出血(ICH、Intracranial hemorrhage)は、タイムリーな診断と正確な治療を必要とする救命救急疾患である。
深層学習技術は、医用画像解析と処理の先駆的なアプローチとして現れてきた。
ICH分類タスクで訓練されたSwin変換器と分類ラベルを併用した,新しいICHセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T00:17:34Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
本研究では,画像レベルラベルのみに監視されたデータ駆動型フレームワークを提案する。
このフレームワークは、生成する対向ネットワークと病変特異的デコーダの助けを借りて、原画像から潜在的な病変を明示的に分離することができる。
論文 参考訳(メタデータ) (2021-03-01T06:05:49Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。