Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning
- URL: http://arxiv.org/abs/2504.10753v1
- Date: Mon, 14 Apr 2025 23:04:35 GMT
- Title: Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning
- Authors: Radin Cheraghi, Amir Mohammad Mahfoozi, Sepehr Zolfaghari, Mohammadshayan Shabani, Maryam Ramezani, Hamid R. Rabiee,
- Abstract summary: We propose an ensemble-based supermodel to generate more robust and reliable predictions.<n>We also introduce a new interpretable non-linear matching approach for the user and item embeddings.
- Score: 2.3310092106321365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommending items to users has long been a fundamental task, and studies have tried to improve it ever since. Most well-known models commonly employ representation learning to map users and items into a unified embedding space for matching assessment. These approaches have primary limitations, especially when dealing with explicit feedback and sparse data contexts. Two primary limitations are their proneness to overfitting and failure to incorporate epistemic uncertainty in predictions. To address these problems, we propose a novel Bayesian Deep Ensemble Collaborative Filtering method named BDECF. To improve model generalization and quality, we utilize Bayesian Neural Networks, which incorporate uncertainty within their weight parameters. In addition, we introduce a new interpretable non-linear matching approach for the user and item embeddings, leveraging the advantages of the attention mechanism. Furthermore, we endorse the implementation of an ensemble-based supermodel to generate more robust and reliable predictions, resulting in a more complete model. Empirical evaluation through extensive experiments and ablation studies across a range of publicly accessible real-world datasets with differing sparsity characteristics confirms our proposed method's effectiveness and the importance of its components.
Related papers
- Enhancement of Approximation Spaces by the Use of Primals and Neighborhood [0.0]
We introduce four new generalized rough set models that draw inspiration from "neighborhoods and primals"
We claim that the current models can preserve nearly all significant aspects associated with the rough set model.
We also demonstrate that the new strategy we define for our everyday health-related problem yields more accurate findings.
arXiv Detail & Related papers (2024-10-23T18:49:13Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Trustworthy Personalized Bayesian Federated Learning via Posterior
Fine-Tune [3.1001287855313966]
We introduce a novel framework for personalized federated learning, incorporating Bayesian methodology.
We show that the new algorithm not only improves accuracy but also outperforms the baseline significantly in OOD detection.
arXiv Detail & Related papers (2024-02-25T13:28:08Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - Bayesian Optimization Meets Laplace Approximation for Robotic
Introspection [41.117361086267806]
We introduce a scalable Laplace Approximation (LA) technique to make Deep Neural Networks (DNNs) more introspective.
In particular, we propose a novel Bayesian Optimization (BO) algorithm to mitigate their tendency of under-fitting the true weight posterior.
We show that the proposed framework can be scaled up to large datasets and architectures.
arXiv Detail & Related papers (2020-10-30T09:28:10Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Latent Unexpected Recommendations [89.2011481379093]
We propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases.
In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model.
arXiv Detail & Related papers (2020-07-27T02:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.