論文の概要: SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
- arxiv url: http://arxiv.org/abs/2410.12481v1
- Date: Wed, 16 Oct 2024 11:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:41.801673
- Title: SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling
- Title(参考訳): SAC-GLAM: ソフトアクター・クオリティとハイハイト・リラベルによるLCMエージェントのオンラインRL改善
- Authors: Loris Gaven, Clement Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud, Pierre-Yves Oudeyer,
- Abstract要約: 本稿では,LSM剤に適応するソフトアクター・クライトと後方視の適応について検討する。
本手法は,従来のマルチゴールRL環境において,オンライン学習を行う自動LLMエージェントへの道筋を示す。
- 参考スコア(独自算出の注目度): 29.29604779151457
- License:
- Abstract: The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
- Abstract(参考訳): 過去数年間、LLM(Large Language Models)は、生成モデルとしてだけでなく、テキストシーケンシャルな意思決定タスクを解決するエージェントとして努力してきた。
ゼロショット能力が不十分な複雑な環境に直面すると、LLMエージェントがインタラクティブに効率的な戦略を発見し、学習するためにオンライン強化学習(RL)を使用できることを示した。
しかし、これまでのほとんどの作業は、オン・ポリティクスのアルゴリズムに固執しており、そのようなエージェントが探索と搾取の両方に使える方法の範囲を大幅に減らしている。
しかし、このような手法はLLM学習エージェントにとって鍵となりうるし、特に自律的動機付けエージェントを設計する際には、自分自身の目標(すなわちオートテオリックエージェント)をサンプリングして追求する。
本稿では,LSM剤に適応するソフトアクター・クライトと後方視の適応について検討する。
本手法は,オンライン学習を行う自動LLMエージェントへの道筋を舗装するだけでなく,従来のマルチゴールRL環境において,オンライン手法よりも優れる。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
トレーニング環境を適応的に作成するフレームワークであるEnvGenを提案する。
我々は、LLM生成環境とLLM生成環境を混合した小さなRLエージェントを訓練する。
我々は、EnvGenで訓練された小さなRLエージェントが、GPT-4エージェントを含むSOTAメソッドより優れており、長い水平タスクをかなり高速に学習できることを発見した。
論文 参考訳(メタデータ) (2024-03-18T17:51:16Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
大規模言語モデル(LLM)は多様なタスクに対して堅牢な問題解決能力を示す。
これらのタスクソルバは、タスクルールを通知し、行動を調整するために手作業によるプロンプトを必要とする。
本稿では,ポリシーレベルのリフレクションと最適化を備えた LLM ベースのエージェントである Agent-Pro を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:09:20Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
強化学習(RL)における目標誤一般化に対処する手法を提案する。
目標の誤一般化は、エージェントがその能力のアウト・オブ・ディストリビューションを維持しながら、意図したものよりもプロキシを追求する場合に発生する。
本研究では,大規模言語モデルを用いてRLエージェントを効率的に監視する方法を示す。
論文 参考訳(メタデータ) (2024-01-14T01:09:48Z) - Mutual Enhancement of Large Language and Reinforcement Learning Models
through Bi-Directional Feedback Mechanisms: A Case Study [1.3597551064547502]
我々は,大規模言語モデル(LLM)と強化学習(RL)モデルの課題に対処するために,教師による学習フレームワークを採用している。
この枠組みの中で、LLMは教師として、RLモデルは学生として機能する。
本手法の有効性を評価するために,この問題に対処し,実証実験を行うための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-12T14:35:57Z) - Large Language Model as a Policy Teacher for Training Reinforcement Learning Agents [16.24662355253529]
LLM(Large Language Models)は、高レベルの命令を提供することによって、シーケンシャルな意思決定タスクに対処することができる。
LLMは、特にリアルタイムな動的環境において、特定のターゲット問題に対処する専門性を欠いている。
LLMベースの教師エージェントからの指示を用いて、より小規模で専門的なRLエージェントを訓練することで、これらの課題に対処する新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-22T13:15:42Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。