論文の概要: LLM-Based Offline Learning for Embodied Agents via Consistency-Guided Reward Ensemble
- arxiv url: http://arxiv.org/abs/2411.17135v1
- Date: Tue, 26 Nov 2024 06:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:57.379602
- Title: LLM-Based Offline Learning for Embodied Agents via Consistency-Guided Reward Ensemble
- Title(参考訳): 一貫性誘導リワードアンサンブルを用いたLLMによるエージェントのオフライン学習
- Authors: Yujeong Lee, Sangwoo Shin, Wei-Jin Park, Honguk Woo,
- Abstract要約: エージェント学習のための一貫性誘導型報酬アンサンブルフレームワーク(CoREN)を提案する。
このフレームワークは、トレーニングデータセットにおけるドメイン基底の報酬を導出するために、時間的に一貫した報酬の適応的なアンサンブルを使用する。
- 参考スコア(独自算出の注目度): 4.41983632543407
- License:
- Abstract: Employing large language models (LLMs) to enable embodied agents has become popular, yet it presents several limitations in practice. In this work, rather than using LLMs directly as agents, we explore their use as tools for embodied agent learning. Specifically, to train separate agents via offline reinforcement learning (RL), an LLM is used to provide dense reward feedback on individual actions in training datasets. In doing so, we present a consistency-guided reward ensemble framework (CoREN), designed for tackling difficulties in grounding LLM-generated estimates to the target environment domain. The framework employs an adaptive ensemble of spatio-temporally consistent rewards to derive domain-grounded rewards in the training datasets, thus enabling effective offline learning of embodied agents in different environment domains. Experiments with the VirtualHome benchmark demonstrate that CoREN significantly outperforms other offline RL agents, and it also achieves comparable performance to state-of-the-art LLM-based agents with 8B parameters, despite CoREN having only 117M parameters for the agent policy network and using LLMs only for training.
- Abstract(参考訳): エンボディエージェントを可能にするために大きな言語モデル(LLM)が普及しているが、実際にはいくつかの制限がある。
本研究では, LLMをエージェントとして直接使用するのではなく, エージェント学習の具体化ツールとしての利用について検討する。
具体的には、オフライン強化学習(RL)を介してエージェントを個別に訓練するために、トレーニングデータセットにおける個々のアクションに対する深い報酬フィードバックを提供するためにLLMを使用する。
そこで本研究では,LLM生成推定を対象環境領域に配置する際の難題を解決するために,一貫性誘導型報酬アンサンブルフレームワーク(CoREN)を提案する。
このフレームワークは、トレーニングデータセットにおけるドメイン基底報酬を導出するために、時空間的に一貫した時空間報酬の適応的なアンサンブルを使用し、異なる環境領域におけるエンボディエージェントの効果的なオフライン学習を可能にする。
VirtualHomeベンチマークの実験では、CoRENは他のオフラインRLエージェントよりも大幅に優れており、CoRENはエージェントポリシーネットワークに対して1700万のパラメータしか持たず、トレーニングのためにのみLLMを使用するにもかかわらず、8Bパラメータを持つ最先端のLLMベースのエージェントと同等のパフォーマンスを達成している。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Robust RL with LLM-Driven Data Synthesis and Policy Adaptation for Autonomous Driving [41.87011820577736]
本稿では、政治強化学習エージェントを学習するための新しいフレームワークであるRAPIDを紹介する。
LLMベースの運転エージェントで合成されたデータとオンライン適応を用いて、警察のRLエージェントを専門に訓練する。
異なるタスクへの適応性を維持しながら、LLM知識の堅牢性を低減する。
論文 参考訳(メタデータ) (2024-10-16T13:43:00Z) - SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling [29.29604779151457]
本稿では,LSM剤に適応するソフトアクター・クライトと後方視の適応について検討する。
本手法は,従来のマルチゴールRL環境において,オンライン学習を行う自動LLMエージェントへの道筋を示す。
論文 参考訳(メタデータ) (2024-10-16T11:59:27Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
トレーニング環境を適応的に作成するフレームワークであるEnvGenを提案する。
我々は、LLM生成環境とLLM生成環境を混合した小さなRLエージェントを訓練する。
我々は、EnvGenで訓練された小さなRLエージェントが、GPT-4エージェントを含むSOTAメソッドより優れており、長い水平タスクをかなり高速に学習できることを発見した。
論文 参考訳(メタデータ) (2024-03-18T17:51:16Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
強化学習(RL)における目標誤一般化に対処する手法を提案する。
目標の誤一般化は、エージェントがその能力のアウト・オブ・ディストリビューションを維持しながら、意図したものよりもプロキシを追求する場合に発生する。
本研究では,大規模言語モデルを用いてRLエージェントを効率的に監視する方法を示す。
論文 参考訳(メタデータ) (2024-01-14T01:09:48Z) - Large Language Model as a Policy Teacher for Training Reinforcement Learning Agents [16.24662355253529]
LLM(Large Language Models)は、高レベルの命令を提供することによって、シーケンシャルな意思決定タスクに対処することができる。
LLMは、特にリアルタイムな動的環境において、特定のターゲット問題に対処する専門性を欠いている。
LLMベースの教師エージェントからの指示を用いて、より小規模で専門的なRLエージェントを訓練することで、これらの課題に対処する新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-22T13:15:42Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。