論文の概要: Advancing Fairness in Natural Language Processing: From Traditional Methods to Explainability
- arxiv url: http://arxiv.org/abs/2410.12511v1
- Date: Wed, 16 Oct 2024 12:38:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:40.449090
- Title: Advancing Fairness in Natural Language Processing: From Traditional Methods to Explainability
- Title(参考訳): 自然言語処理における公平性の向上:従来の手法から説明可能性へ
- Authors: Fanny Jourdan,
- Abstract要約: この論文は、NLPシステムにおける株式と透明性の必要性に対処している。
高リスクNLPアプリケーションにおけるバイアスを軽減する革新的なアルゴリズムを導入している。
また、トランスフォーマーモデルの概念を特定し、ランク付けするモデルに依存しない説明可能性法を提案する。
- 参考スコア(独自算出の注目度): 0.9065034043031668
- License:
- Abstract: The burgeoning field of Natural Language Processing (NLP) stands at a critical juncture where the integration of fairness within its frameworks has become an imperative. This PhD thesis addresses the need for equity and transparency in NLP systems, recognizing that fairness in NLP is not merely a technical challenge but a moral and ethical necessity, requiring a rigorous examination of how these technologies interact with and impact diverse human populations. Through this lens, this thesis undertakes a thorough investigation into the development of equitable NLP methodologies and the evaluation of biases that prevail in current systems. First, it introduces an innovative algorithm to mitigate biases in multi-class classifiers, tailored for high-risk NLP applications, surpassing traditional methods in both bias mitigation and prediction accuracy. Then, an analysis of the Bios dataset reveals the impact of dataset size on discriminatory biases and the limitations of standard fairness metrics. This awareness has led to explorations in the field of explainable AI, aiming for a more complete understanding of biases where traditional metrics are limited. Consequently, the thesis presents COCKATIEL, a model-agnostic explainability method that identifies and ranks concepts in Transformer models, outperforming previous approaches in sentiment analysis tasks. Finally, the thesis contributes to bridging the gap between fairness and explainability by introducing TaCo, a novel method to neutralize bias in Transformer model embeddings. In conclusion, this thesis constitutes a significant interdisciplinary endeavor that intertwines explicability and fairness to challenge and reshape current NLP paradigms. The methodologies and critiques presented contribute to the ongoing discourse on fairness in machine learning, offering actionable solutions for more equitable and responsible AI systems.
- Abstract(参考訳): 自然言語処理(NLP)の急成長する分野は、そのフレームワーク内での公平さの統合が不可欠になっている臨界点にある。
この博士論文は、NLPシステムのエクイティと透明性の必要性に対処し、NLPの公正性は単なる技術的課題ではなく、道徳的および倫理的な必要性であり、これらの技術が様々な人間の集団とどのように相互作用し、影響を及ぼすかの厳密な検証を必要とすることを認識している。
このレンズを通して、この論文は、等価NLP法の開発と、現在のシステムで広く普及しているバイアスの評価について、徹底的な研究を行う。
まず、リスクの高いNLPアプリケーションに適したマルチクラス分類器のバイアスを緩和する革新的なアルゴリズムを導入し、バイアス軽減と予測精度の両方において従来の手法を超越した。
次に、Biosデータセットの分析により、データセットサイズが差別バイアスおよび標準公正度指標の制限に与える影響を明らかにする。
この認識は、従来のメトリクスが限られているバイアスをより完全に理解することを目的とした、説明可能なAIの分野での探索につながった。
この論文は、トランスフォーマーモデルの概念を特定し、ランク付けするモデルに依存しない説明可能性手法であるCOCKATIELを提示し、感情分析タスクにおける従来のアプローチよりも優れている。
最後に、この論文は、Transformerモデル埋め込みにおいてバイアスを中和する新しい方法であるTaCoを導入することによって、公平性と説明可能性の間のギャップを埋めることに貢献している。
結論として、この論文は、現在のNLPパラダイムに挑戦し、再形成するために、説明可能性と公正性に介入する重要な学際的取り組みを構成する。
提示された方法論と批判は、機械学習における公正性に関する継続的な議論に寄与し、より公平で責任のあるAIシステムに対して実行可能なソリューションを提供する。
関連論文リスト
- Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
NLP分野における不確実性関連作業の総合的なレビューを行う。
まず、自然言語の不確実性の原因を、入力、システム、出力の3つのタイプに分類する。
我々は,NLPにおける不確実性推定の課題について論じ,今後の方向性について論じる。
論文 参考訳(メタデータ) (2023-06-05T06:46:53Z) - A toolkit of dilemmas: Beyond debiasing and fairness formulas for
responsible AI/ML [0.0]
公正で倫理的なAIへのアプローチは、最近、批判データ研究の新興分野の精査の下に落ちている。
本稿では,責任あるアルゴリズム/データ駆動システムを取り巻くジレンマに対して,位置的推論と創造的関与を提唱する。
論文 参考訳(メタデータ) (2023-03-03T13:58:24Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - A Survey of Methods for Addressing Class Imbalance in Deep-Learning
Based Natural Language Processing [68.37496795076203]
非バランスなデータを扱うNLP研究者や実践者に対してガイダンスを提供する。
まず、制御および実世界のクラス不均衡の様々なタイプについて論じる。
サンプリング,データ拡張,損失関数の選択,ステージ学習,モデル設計に基づく手法を整理する。
論文 参考訳(メタデータ) (2022-10-10T13:26:40Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
デュエルケアなしでデータに基づいて訓練された機械学習モデルは、特定の人口に対して不公平で差別的な行動を示すことが多い。
本研究では,変動分布に公平なペナルティを含む離散潜伏変数に対して,公平な変分推論手法を開発した。
提案手法の一般化と実世界への影響の可能性を示すため,刑事司法リスク評価のための特別目的グラフィカルモデルを構築した。
論文 参考訳(メタデータ) (2022-09-15T04:54:21Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。