Proposal of quantum repeater architecture based on Rydberg atom quantum processors
- URL: http://arxiv.org/abs/2410.12523v1
- Date: Wed, 16 Oct 2024 13:02:36 GMT
- Title: Proposal of quantum repeater architecture based on Rydberg atom quantum processors
- Authors: Yan-Lei Zhang, Qing-Xuan Jie, Ming Li, Shu-Hao Wu, Zhu-Bo Wang, Xu-Bo Zou, Peng-Fei Zhang, Gang Li, Tiancai Zhang, Guang-Can Guo, Chang-Ling Zou,
- Abstract summary: Large-scale quantum networks require the generation of high-fidelity quantum entanglement states between remote quantum nodes.
Here, we propose a novel quantum repeater architecture that integrates Rydberg atom quantum processors with optical cavities to overcome these challenges.
Numerical simulations, incorporating realistic experimental parameters, demonstrate the generation of Bell states with 99% fidelity at rates of 1.1,kHz between two nodes in local-area network.
- Score: 8.931377602479
- License:
- Abstract: Realizing large-scale quantum networks requires the generation of high-fidelity quantum entanglement states between remote quantum nodes, a key resource for quantum communication, distributed computation and sensing applications. However, entanglement distribution between quantum network nodes is hindered by optical transmission loss and local operation errors. Here, we propose a novel quantum repeater architecture that synergistically integrates Rydberg atom quantum processors with optical cavities to overcome these challenges. Our scheme leverages cavity-mediated interactions for efficient remote entanglement generation, followed by Rydberg interaction-based entanglement purification and swapping. Numerical simulations, incorporating realistic experimental parameters, demonstrate the generation of Bell states with 99\% fidelity at rates of 1.1\,kHz between two nodes in local-area network (distance $0.1\,\mathrm{km}$), and can be extend to metropolitan-area ($25\,\mathrm{km}$) or intercity ($\mathrm{250\,\mathrm{km}}$, with the assitance of frequency converters) network with a rate of 0.1\,kHz. This scalable approach opens up near-term opportunities for exploring quantum network applications and investigating the advantages of distributed quantum information processing.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Nonlocal photonic quantum gates over 7.0 km [5.545769900845797]
We demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km.
Results are a proof-of-principle demonstration of quantum gates over metropolitan-scale distances.
arXiv Detail & Related papers (2023-07-28T15:49:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons.
We analyse a specific hardware implementation based on superconducting circuits.
We obtain state-of-the-art accuracy of 99 % on benchmark tasks.
arXiv Detail & Related papers (2022-09-07T15:24:51Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Universal deterministic quantum operations in microwave quantum links [0.0]
We propose a realistic setup, inspired by already existing experiments, within which we develop a general formalism for the implementation of distributed quantum gates.
We identify the most relevant imperfections in the quantum links as well as optimal points of operation with resulting infidelities of $1-F approx 10-2-10-3$.
arXiv Detail & Related papers (2021-10-05T14:45:13Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.