Self-DenseMobileNet: A Robust Framework for Lung Nodule Classification using Self-ONN and Stacking-based Meta-Classifier
- URL: http://arxiv.org/abs/2410.12584v1
- Date: Wed, 16 Oct 2024 14:04:06 GMT
- Title: Self-DenseMobileNet: A Robust Framework for Lung Nodule Classification using Self-ONN and Stacking-based Meta-Classifier
- Authors: Md. Sohanur Rahman, Muhammad E. H. Chowdhury, Hasib Ryan Rahman, Mosabber Uddin Ahmed, Muhammad Ashad Kabir, Sanjiban Sekhar Roy, Rusab Sarmun,
- Abstract summary: Self-DenseMobileNet is designed to enhance the classification of nodules and non-nodules in chest radiographs (CXRs)
Our framework integrates advanced image standardization and enhancement techniques to optimize the input quality.
When tested on an external dataset, the framework maintained strong generalizability with an accuracy of 89.40%.
- Score: 1.2300841481611335
- License:
- Abstract: In this study, we propose a novel and robust framework, Self-DenseMobileNet, designed to enhance the classification of nodules and non-nodules in chest radiographs (CXRs). Our approach integrates advanced image standardization and enhancement techniques to optimize the input quality, thereby improving classification accuracy. To enhance predictive accuracy and leverage the strengths of multiple models, the prediction probabilities from Self-DenseMobileNet were transformed into tabular data and used to train eight classical machine learning (ML) models; the top three performers were then combined via a stacking algorithm, creating a robust meta-classifier that integrates their collective insights for superior classification performance. To enhance the interpretability of our results, we employed class activation mapping (CAM) to visualize the decision-making process of the best-performing model. Our proposed framework demonstrated remarkable performance on internal validation data, achieving an accuracy of 99.28\% using a Meta-Random Forest Classifier. When tested on an external dataset, the framework maintained strong generalizability with an accuracy of 89.40\%. These results highlight a significant improvement in the classification of CXRs with lung nodules.
Related papers
- CAVE: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
In this study, we explore an ensemble-based approach to improve classification accuracy in complex image datasets.
We leverage the unique feature-extraction capabilities of each model to enhance the overall accuracy.
Experimental evaluations demonstrate that the ensemble achieves higher accuracy and robustness across challenging and imbalanced classes.
arXiv Detail & Related papers (2024-10-26T17:25:08Z) - Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
arXiv Detail & Related papers (2024-07-02T15:05:19Z) - Ransomware detection using stacked autoencoder for feature selection [0.0]
The study meticulously analyzes the autoencoder's learned weights and activations to identify essential features for distinguishing ransomware families from other malware.
The proposed model achieves an exceptional 99% accuracy in ransomware classification, surpassing the Extreme Gradient Boosting (XGBoost) algorithm.
arXiv Detail & Related papers (2024-02-17T17:31:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.