論文の概要: Neural Semantic Parsing with Extremely Rich Symbolic Meaning Representations
- arxiv url: http://arxiv.org/abs/2404.12698v2
- Date: Wed, 18 Sep 2024 09:47:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:13:20.326962
- Title: Neural Semantic Parsing with Extremely Rich Symbolic Meaning Representations
- Title(参考訳): 非常にリッチな記号的意味表現を用いたニューラルセマンティックパーシング
- Authors: Xiao Zhang, Gosse Bouma, Johan Bos,
- Abstract要約: 分類学的階層におけるその位置に基づく概念のための新しい構成記号表現を導入する。
この表現はよりリッチな意味情報を提供し、解釈可能性を高める。
実験結果から,より豊かで複雑な意味表現に基づいて訓練された分類モデルは,評価基準を用いて従来のモデルに若干従属するが,語彙外概念を扱う場合よりも優れることがわかった。
- 参考スコア(独自算出の注目度): 7.774674200374255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current open-domain neural semantics parsers show impressive performance. However, closer inspection of the symbolic meaning representations they produce reveals significant weaknesses: sometimes they tend to merely copy character sequences from the source text to form symbolic concepts, defaulting to the most frequent word sense based in the training distribution. By leveraging the hierarchical structure of a lexical ontology, we introduce a novel compositional symbolic representation for concepts based on their position in the taxonomical hierarchy. This representation provides richer semantic information and enhances interpretability. We introduce a neural "taxonomical" semantic parser to utilize this new representation system of predicates, and compare it with a standard neural semantic parser trained on the traditional meaning representation format, employing a novel challenge set and evaluation metric for evaluation. Our experimental findings demonstrate that the taxonomical model, trained on much richer and complex meaning representations, is slightly subordinate in performance to the traditional model using the standard metrics for evaluation, but outperforms it when dealing with out-of-vocabulary concepts. This finding is encouraging for research in computational semantics that aims to combine data-driven distributional meanings with knowledge-based symbolic representations.
- Abstract(参考訳): 現在のオープンドメイン・ニューラルセマンティックス・パーサーは素晴らしい性能を示している。
しかし、それらが生成する記号的意味表現の綿密な検査は、重要な弱点を明らかにしている: トレーニング分布に基づく最も頻繁な単語感覚にデフォルトを付けて、ソーステキストから文字シーケンスを単にコピーしてシンボル的概念を形成する傾向がある。
語彙オントロジーの階層構造を活用することで、分類学的階層におけるその位置に基づく概念に対する新しい構成記号表現を導入する。
この表現はよりリッチな意味情報を提供し、解釈可能性を高める。
本稿では,従来の意味表現形式を訓練した標準的な神経意味解析システムと比較し,新しい課題セットと評価基準を用いて評価を行う。
実験結果から,より豊かで複雑な意味表現に基づいて訓練された分類モデルは,評価基準を用いて従来のモデルに若干従属するが,語彙外概念を扱う場合よりも優れることがわかった。
この発見は、データ駆動の分布の意味と知識に基づく記号表現を組み合わせることを目的とした、計算意味論の研究を奨励している。
関連論文リスト
- Explainable Moral Values: a neuro-symbolic approach to value classification [1.4186974630564675]
本研究では、オントロジーに基づく推論と、説明可能な値分類のための機械学習技術の統合について検討する。
道徳的価値のオントロジ的形式化をモラル・ファンデーションズ・セオリー(英語版)のように頼りにすることで、テクティサンドラのニューラルシンボリック・リセサイザーは、ある文で満たされる価値を推測するために用いられる。
推理器の推論のみに依存すると、他のより複雑な手法に匹敵する説明可能な分類が得られることを示す。
論文 参考訳(メタデータ) (2024-10-16T14:53:13Z) - How well do distributed representations convey contextual lexical semantics: a Thesis Proposal [3.3585951129432323]
本稿では,現代ニューラルネットワークによる語彙意味の符号化における分散表現の有効性について検討する。
文脈に影響された意味の関連性と類似性に基づいて,曖昧さの4つの源を同定する。
次に、多言語データセットの収集や構築、様々な言語モデルの利用、言語解析ツールの利用により、これらの情報源を評価することを目的とする。
論文 参考訳(メタデータ) (2024-06-02T14:08:51Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Neural-Symbolic Recursive Machine for Systematic Generalization [113.22455566135757]
我々は、基底記号システム(GSS)のコアとなるニューラル・シンボリック再帰機械(NSR)を紹介する。
NSRは神経知覚、構文解析、意味推論を統合している。
我々はNSRの有効性を,系統的一般化能力の探索を目的とした4つの挑戦的ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-10-04T13:27:38Z) - Transition-based Abstract Meaning Representation Parsing with Contextual
Embeddings [0.0]
本研究では,意味解析のタスクにおいて,言語モデルと記号意味論の定式化という,言語の意味への最も成功したルートを2つ組み合わせる手法について検討する。
本稿では,事前学習した文脈認識単語の埋め込み(BERTやRoBERTaなど)を解析問題に組み込むことの有用性について検討する。
論文 参考訳(メタデータ) (2022-06-13T15:05:24Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Semantic Representation and Inference for NLP [2.969705152497174]
この論文は、新しい意味表現と推論のための深層学習の利用について考察する。
我々は,自動クレーム検証を目的とした,現実の事実クレームの公開データセットとして最大である。
語句表現を外部単語埋め込みと知識グラフで豊かにすることにより,句の構成性を文脈的に操作する。
論文 参考訳(メタデータ) (2021-06-15T13:22:48Z) - Discrete representations in neural models of spoken language [56.29049879393466]
音声言語の弱教師付きモデルの文脈における4つの一般的なメトリクスの利点を比較した。
異なる評価指標が矛盾する結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2021-05-12T11:02:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Semantic Sentiment Analysis Based on Probabilistic Graphical Models and
Recurrent Neural Network [0.0]
本研究の目的は,確率的グラフィカルモデルとリカレントニューラルネットワークに基づく感情分析を行うためのセマンティクスの利用を検討することである。
実験で使用されたデータセットは、IMDB映画レビュー、Amazon Consumer Product Review、Twitter Reviewデータセットである。
論文 参考訳(メタデータ) (2020-08-06T11:59:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。