論文の概要: Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks
- arxiv url: http://arxiv.org/abs/2410.12655v1
- Date: Wed, 16 Oct 2024 15:16:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:35.198906
- Title: Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks
- Title(参考訳): 位置特定スコーリングがすべて必要か? : タンパク質配列分類タスクの再検討
- Authors: Sarwan Ali, Taslim Murad, Prakash Chourasia, Haris Mansoor, Imdad Ullah Khan, Pin-Yu Chen, Murray Patterson,
- Abstract要約: タンパク質配列のPSS表現と文字列カーネルの概念を組み合わせた重み付きPSSカーネル行列(W-PSSKM)を提案する。
この結果、タンパク質配列分類の他の多くのアプローチよりも優れた新しいカーネル関数がもたらされる。
- 参考スコア(独自算出の注目度): 41.7345616221048
- License:
- Abstract: Understanding the structural and functional characteristics of proteins are crucial for developing preventative and curative strategies that impact fields from drug discovery to policy development. An important and popular technique for examining how amino acids make up these characteristics of the protein sequences with position-specific scoring (PSS). While the string kernel is crucial in natural language processing (NLP), it is unclear if string kernels can extract biologically meaningful information from protein sequences, despite the fact that they have been shown to be effective in the general sequence analysis tasks. In this work, we propose a weighted PSS kernel matrix (or W-PSSKM), that combines a PSS representation of protein sequences, which encodes the frequency information of each amino acid in a sequence, with the notion of the string kernel. This results in a novel kernel function that outperforms many other approaches for protein sequence classification. We perform extensive experimentation to evaluate the proposed method. Our findings demonstrate that the W-PSSKM significantly outperforms existing baselines and state-of-the-art methods and achieves up to 45.1\% improvement in classification accuracy.
- Abstract(参考訳): タンパク質の構造的特徴と機能的特性を理解することは、薬物発見から政策開発まで、フィールドに影響を及ぼす予防的および治療的戦略の開発に不可欠である。
アミノ酸が位置特異的スコアリング(PSS)を持つタンパク質配列の特徴をどのように構成するかを調べるための重要で一般的な技術である。
文字列カーネルは自然言語処理(NLP)において重要であるが、一般的な配列解析タスクにおいて有効であることが示されているにもかかわらず、文字列カーネルがタンパク質配列から生物学的に意味のある情報を抽出できるかどうかは不明である。
本研究では,タンパク質配列のPSS表現と文字列カーネルの概念を組み合わせた重み付きPSSカーネル行列(W-PSSKM)を提案する。
この結果、タンパク質配列分類の他の多くのアプローチよりも優れた新しいカーネル関数がもたらされる。
提案手法を評価するため,広範囲な実験を行った。
以上の結果から, W-PSSKMは既存のベースラインや最先端手法を著しく上回り, 分類精度を最大45.1\%向上させることがわかった。
関連論文リスト
- Reinforcement Learning for Sequence Design Leveraging Protein Language Models [14.477268882311991]
本稿では,タンパク質言語モデル(PLM)を報酬関数として利用し,新たな配列を生成することを提案する。
我々はRLベースのアプローチをベンチマークするために、様々なシーケンス長に関する広範な実験を行う。
生物学的妥当性とタンパク質の多様性に関する総合的な評価を行った。
論文 参考訳(メタデータ) (2024-07-03T14:31:36Z) - Protein Representation Learning with Sequence Information Embedding: Does it Always Lead to a Better Performance? [4.7077642423577775]
本稿では,アミノ酸構造表現のみに基づく局所幾何アライメント手法ProtLOCAを提案する。
本手法は,構造的に整合性のあるタンパク質ドメインとより迅速かつ正確にマッチングすることで,既存の配列および構造に基づく表現学習法より優れる。
論文 参考訳(メタデータ) (2024-06-28T08:54:37Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
Emphde novoペプチドシークエンシングのための初となるNovoBenchベンチマークを報告する。
多様な質量スペクトルデータ、統合モデル、総合的な評価指標から構成される。
DeepNovo、PointNovo、Casanovo、InstaNovo、AdaNovo、$pi$-HelixNovoといった最近の手法が私たちのフレームワークに統合されています。
論文 参考訳(メタデータ) (2024-06-16T08:23:21Z) - Clustering for Protein Representation Learning [72.72957540484664]
本稿では,タンパク質の臨界成分を自動的に検出するニューラルネットワーククラスタリングフレームワークを提案する。
我々のフレームワークはタンパク質をグラフとして扱い、各ノードはアミノ酸を表し、各エッジはアミノ酸間の空間的またはシーケンシャルな接続を表す。
タンパク質の折り畳み分類, 酵素反応分類, 遺伝子期予測, 酵素コミッショニング数予測の4つの課題について検討した。
論文 参考訳(メタデータ) (2024-03-30T05:51:09Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
本稿では,背骨化学および側鎖生物物理情報をタンパク質分類タスクに組み込む新しい意味データ拡張手法を提案する。
具体的には, 分子生物学的, 二次構造, 化学結合, およびタンパク質のイオン特性を活用し, 分類作業を容易にする。
論文 参考訳(メタデータ) (2024-03-21T13:27:57Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data [0.0]
本稿では,新たな双方向LSTMや畳み込みモデルなどのディープラーニングフレームワークの性能を,広く利用可能なシークエンシングデータ上で実証し比較する。
我々のディープラーニングモデルは従来の機械学習手法よりも優れた性能を示し、畳み込みアーキテクチャは最も印象的な推論性能を提供する。
論文 参考訳(メタデータ) (2022-07-14T06:11:32Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - Leveraging Sequence Embedding and Convolutional Neural Network for
Protein Function Prediction [27.212743275697825]
タンパク質機能予測の主な課題は、大きなラベル空間とラベル付きトレーニングデータの欠如である。
これらの課題を克服するために、教師なしシーケンス埋め込みと深部畳み込みニューラルネットワークの成功を活用する。
論文 参考訳(メタデータ) (2021-12-01T08:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。