Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning
- URL: http://arxiv.org/abs/2410.12657v1
- Date: Wed, 16 Oct 2024 15:18:03 GMT
- Title: Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning
- Authors: Zhuomin Chen, Jingchao Ni, Hojat Allah Salehi, Xu Zheng, Esteban Schafir, Farhad Shirani, Dongsheng Luo,
- Abstract summary: Graph representation learning (GRL) has emerged as an effective technique achieving performance improvements in wide tasks such as node classification and graph classification.
We propose a novel method, Explanation-Preserving Augmentation (EPA), that leverages graph explanation techniques for generating augmented graphs.
EPA first uses a small number of labels to train a graph explainer to infer the sub-structures (explanations) that are most relevant to a graph's semantics.
- Score: 13.494832603509897
- License:
- Abstract: Graph representation learning (GRL), enhanced by graph augmentation methods, has emerged as an effective technique achieving performance improvements in wide tasks such as node classification and graph classification. In self-supervised GRL, paired graph augmentations are generated from each graph. Its objective is to infer similar representations for augmentations of the same graph, but maximally distinguishable representations for augmentations of different graphs. Analogous to image and language domains, the desiderata of an ideal augmentation method include both (1) semantics-preservation; and (2) data-perturbation; i.e., an augmented graph should preserve the semantics of its original graph while carrying sufficient variance. However, most existing (un-)/self-supervised GRL methods focus on data perturbation but largely neglect semantics preservation. To address this challenge, in this paper, we propose a novel method, Explanation-Preserving Augmentation (EPA), that leverages graph explanation techniques for generating augmented graphs that can bridge the gap between semantics-preservation and data-perturbation. EPA first uses a small number of labels to train a graph explainer to infer the sub-structures (explanations) that are most relevant to a graph's semantics. These explanations are then used to generate semantics-preserving augmentations for self-supervised GRL, namely EPA-GRL. We demonstrate theoretically, using an analytical example, and through extensive experiments on a variety of benchmark datasets that EPA-GRL outperforms the state-of-the-art (SOTA) GRL methods, which are built upon semantics-agnostic data augmentations.
Related papers
- GSINA: Improving Subgraph Extraction for Graph Invariant Learning via
Graph Sinkhorn Attention [52.67633391931959]
Graph invariant learning (GIL) has been an effective approach to discovering the invariant relationships between graph data and its labels.
We propose a novel graph attention mechanism called Graph Sinkhorn Attention (GSINA)
GSINA is able to obtain meaningful, differentiable invariant subgraphs with controllable sparsity and softness.
arXiv Detail & Related papers (2024-02-11T12:57:16Z) - Through the Dual-Prism: A Spectral Perspective on Graph Data
Augmentation for Graph Classification [71.36575018271405]
We introduce the Dual-Prism (DP) augmentation method, comprising DP-Noise and DP-Mask.
We find that keeping the low-frequency eigenvalues unchanged can preserve the critical properties at a large scale when generating augmented graphs.
arXiv Detail & Related papers (2024-01-18T12:58:53Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning [34.23920789327245]
We propose ENGAGE, where explanation guides the contrastive augmentation process to preserve the key parts in graphs.
We also design two data augmentation schemes on graphs for perturbing structural and feature information, respectively.
arXiv Detail & Related papers (2023-07-03T14:33:14Z) - Graph Contrastive Learning with Personalized Augmentation [17.714437631216516]
Graph contrastive learning (GCL) has emerged as an effective tool for learning unsupervised representations of graphs.
We propose a principled framework, termed as textitGraph contrastive learning with textitPersonalized textitAugmentation (GPA)
GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector.
arXiv Detail & Related papers (2022-09-14T11:37:48Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Augmentation-Free Self-Supervised Learning on Graphs [7.146027549101716]
We propose a novel augmentation-free self-supervised learning framework for graphs, named AFGRL.
Specifically, we generate an alternative view of a graph by discovering nodes that share the local structural information and the global semantics with the graph.
arXiv Detail & Related papers (2021-12-05T04:20:44Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.