Hamiltonian bridge: A physics-driven generative framework for targeted pattern control
- URL: http://arxiv.org/abs/2410.12665v1
- Date: Wed, 16 Oct 2024 15:24:54 GMT
- Title: Hamiltonian bridge: A physics-driven generative framework for targeted pattern control
- Authors: Vishaal Krishnan, Sumit Sinha, L. Mahadevan,
- Abstract summary: We present a framework that allows us to control patterns at multiple scales, which we dub the "Hamiltonian bridge"
We show how optimal control can be utilized to generate complex patterns via an iterative control protocol over pattern forming pdes which can be casted as Euler flows.
- Score: 0.8192907805418583
- License:
- Abstract: Patterns arise spontaneously in a range of systems spanning the sciences, and their study typically focuses on mechanisms to understand their evolution in space-time. Increasingly, there has been a transition towards controlling these patterns in various functional settings, with implications for engineering. Here, we combine our knowledge of a general class of dynamical laws for pattern formation in non-equilibrium systems, and the power of stochastic optimal control approaches to present a framework that allows us to control patterns at multiple scales, which we dub the "Hamiltonian bridge". We use a mapping between stochastic many-body Lagrangian physics and deterministic Eulerian pattern forming PDEs to leverage our recent approach utilizing the Feynman-Kac-based adjoint path integral formulation for the control of interacting particles and generalize this to the active control of patterning fields. We demonstrate the applicability of our computational framework via numerical experiments on the control of phase separation with and without a conserved order parameter, self-assembly of fluid droplets, coupled reaction-diffusion equations and finally a phenomenological model for spatio-temporal tissue differentiation. We interpret our numerical experiments in terms of a theoretical understanding of how the underlying physics shapes the geometry of the pattern manifold, altering the transport paths of patterns and the nature of pattern interpolation. We finally conclude by showing how optimal control can be utilized to generate complex patterns via an iterative control protocol over pattern forming pdes which can be casted as gradient flows. All together, our study shows how we can systematically build in physical priors into a generative framework for pattern control in non-equilibrium systems across multiple length and time scales.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Interactions and Topology in Quantum Matter: Auxiliary Field Approach &
Generalized SSH Models [0.0]
This thesis presents a set of projects which lie at the intersection between strong correlations and topological phases of matter.
The first of these projects is a treatment of an infinite dimensional generalization of the SSH model with local Coulomb interactions which is solved exactly using DMFT-NRG.
The second set of projects involves the development of methods for formulating non-interacting auxiliary models for strongly correlated systems.
arXiv Detail & Related papers (2022-12-09T18:38:31Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Policy Analysis using Synthetic Controls in Continuous-Time [101.35070661471124]
Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference.
We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations.
arXiv Detail & Related papers (2021-02-02T16:07:39Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
We present a novel hierarchical predictor-corrector scheme which enables neural networks to learn to understand and control complex nonlinear physical systems over long time frames.
We demonstrate that our method successfully develops an understanding of complex physical systems and learns to control them for tasks involving PDEs.
arXiv Detail & Related papers (2020-01-21T11:58:41Z) - Self-Supervised Learning of Generative Spin-Glasses with Normalizing
Flows [0.0]
We develop continuous spin-glass distributions with normalizing flows to model correlations in generic discrete problems.
We demonstrate that key physical and computational properties of the spin-glass phase can be successfully learned.
Remarkably, we observe that the learning itself corresponds to a spin-glass phase transition within the layers of the trained normalizing flows.
arXiv Detail & Related papers (2020-01-02T19:00:01Z) - The entanglement membrane in chaotic many-body systems [0.0]
In certain analytically-tractable quantum chaotic systems, the calculation of out-of-time-order correlation functions, entanglement entropies after a quench, and other related dynamical observables, reduces to an effective theory of an entanglement membrane'' in spacetime.
We show here how to make sense of this membrane in more realistic models, which do not involve an average over random unitaries.
arXiv Detail & Related papers (2019-12-27T19:01:13Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
We introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system.
In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way.
This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.
arXiv Detail & Related papers (2019-09-26T13:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.