Self-Supervised Learning of Generative Spin-Glasses with Normalizing
Flows
- URL: http://arxiv.org/abs/2001.00585v2
- Date: Fri, 10 Jan 2020 19:00:01 GMT
- Title: Self-Supervised Learning of Generative Spin-Glasses with Normalizing
Flows
- Authors: Gavin S. Hartnett, Masoud Mohseni
- Abstract summary: We develop continuous spin-glass distributions with normalizing flows to model correlations in generic discrete problems.
We demonstrate that key physical and computational properties of the spin-glass phase can be successfully learned.
Remarkably, we observe that the learning itself corresponds to a spin-glass phase transition within the layers of the trained normalizing flows.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-glasses are universal models that can capture complex behavior of
many-body systems at the interface of statistical physics and computer science
including discrete optimization, inference in graphical models, and automated
reasoning. Computing the underlying structure and dynamics of such complex
systems is extremely difficult due to the combinatorial explosion of their
state space. Here, we develop deep generative continuous spin-glass
distributions with normalizing flows to model correlations in generic discrete
problems. We use a self-supervised learning paradigm by automatically
generating the data from the spin-glass itself. We demonstrate that key
physical and computational properties of the spin-glass phase can be
successfully learned, including multi-modal steady-state distributions and
topological structures among metastable states. Remarkably, we observe that the
learning itself corresponds to a spin-glass phase transition within the layers
of the trained normalizing flows. The inverse normalizing flows learns to
perform reversible multi-scale coarse-graining operations which are very
different from the typical irreversible renormalization group techniques.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Autoencoders for discovering manifold dimension and coordinates in data
from complex dynamical systems [0.0]
Autoencoder framework combines implicit regularization with internal linear layers and $L$ regularization (weight decay)
We show that this framework can be naturally extended for applications of state-space modeling and forecasting.
arXiv Detail & Related papers (2023-05-01T21:14:47Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
We demonstrate an unsupervised learning approach that achieves fully transferrable learning for problems in statistical physics across different physical regimes.
By coupling a sequence model based on a recurrent neural network to an extensive deep neural network, we are able to learn the equilibrium probability distributions and inter-particle interaction models of classical statistical mechanical systems.
arXiv Detail & Related papers (2020-03-03T18:37:23Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.