論文の概要: MambaBEV: An efficient 3D detection model with Mamba2
- arxiv url: http://arxiv.org/abs/2410.12673v1
- Date: Wed, 16 Oct 2024 15:37:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:36.387446
- Title: MambaBEV: An efficient 3D detection model with Mamba2
- Title(参考訳): MambaBEV:Mamba2を用いた効率的な3D検出モデル
- Authors: Zihan You, Hao Wang, Qichao Zhao, Jinxiang Wang,
- Abstract要約: 本稿では,mamba2を用いたBEV 3Dオブジェクト検出モデルを提案する。
また、モデルの性能をテストするためにエンド・ツー・エンドの自動運転パラダイムを適用します。
- 参考スコア(独自算出の注目度): 4.782473183865045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A stable 3D object detection model based on BEV paradigm with temporal information is very important for autonomous driving systems. However, current temporal fusion model use convolutional layer or deformable self-attention is not conducive to the exchange of global information of BEV space and has more computational cost. Recently, a newly proposed based model specialized in processing sequence called mamba has shown great potential in multiple downstream task. In this work, we proposed a mamba2-based BEV 3D object detection model named MambaBEV. We also adapt an end to end self driving paradigm to test the performance of the model. Our work performs pretty good results on nucences datasets:Our base version achieves 51.7% NDS. Our code will be available soon.
- Abstract(参考訳): 自律運転システムにおいて,時間情報を用いたBEVパラダイムに基づく安定3次元物体検出モデルが非常に重要である。
しかし、現在の時間融合モデルでは、畳み込み層や変形可能な自己アテンションは、BEV空間のグローバルな情報の交換とは関係がなく、より計算コストが高い。
近年,マルチダウンストリームタスクにおいて,mambaと呼ばれる処理シーケンスに特化する新たなモデルが提案されている。
本研究では,mamba2をベースとしたBEV3Dオブジェクト検出モデルであるMambaBEVを提案する。
また、モデルの性能をテストするためにエンド・ツー・エンドの自動運転パラダイムを適用します。
我々のベースバージョンは51.7%のNDSを実現しています。
私たちのコードはまもなく利用可能になります。
関連論文リスト
- MamBEV: Enabling State Space Models to Learn Birds-Eye-View Representations [6.688344169640982]
我々は,Bird's Eye Viewの統一表現を学習するMamBEVというMambaベースのフレームワークを提案する。
MamBEVは、計算とメモリ効率を大幅に改善した複数の3D知覚タスクをサポートする。
MamBEVの有望なパフォーマンスを様々な視覚的知覚メトリクスで実証する実験である。
論文 参考訳(メタデータ) (2025-03-18T03:18:45Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
FASDと呼ばれる高速LiDAR3Dオブジェクト検出フレームワークを提案する。
高速シーケンスモデリングのための変換器のキャパシティをFLOPの低いMambaモデルに蒸留し,知識伝達による精度の向上を実現することを目的とする。
我々は,データセットとnuScenesのフレームワークを評価し,リソース消費の4倍の削減と,現在のSoTA手法よりも1-2%の性能向上を実現した。
論文 参考訳(メタデータ) (2024-09-17T09:30:43Z) - MambaOcc: Visual State Space Model for BEV-based Occupancy Prediction with Local Adaptive Reordering [31.239405105904574]
そこで我々は,3次元シナリオ表現の負担を軽減するために,BEV機能を採用したマンバ型占有予測手法を提案する。
Occ3D-nuScenesデータセットの実験は、MambaOccが精度と計算効率の両方で最先端のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2024-08-21T09:29:45Z) - BEVWorld: A Multimodal World Model for Autonomous Driving via Unified BEV Latent Space [57.68134574076005]
BEVWorldは,マルチモーダルセンサの入力を,環境モデリングのための統一的でコンパクトなBird's Eye View潜在空間にトークン化する手法である。
実験は、自律走行タスクにおけるBEVWorldの有効性を示し、将来のシーンを生成する能力を示し、知覚や動き予測のような下流タスクに恩恵を与える。
論文 参考訳(メタデータ) (2024-07-08T07:26:08Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
本稿では,BEVアルゴリズムのレジリエンスを評価するためのベンチマークスイートであるRoboBEVを紹介する。
検出,マップセグメンテーション,深さ推定,占有予測といったタスクにまたがる33の最先端のBEVベースの知覚モデルを評価する。
また, 事前学習や深度自由なBEVトランスフォーメーションなどの戦略が, アウト・オブ・ディストリビューションデータに対するロバスト性を高める上で有効であることを示す。
論文 参考訳(メタデータ) (2024-05-27T17:59:39Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
カメラによる鳥眼視(BEV)知覚パラダイムは、自律運転分野において大きな進歩を遂げている。
画像平面のインスタンス認識をBEV検出器内の深度推定プロセスに統合するIA-BEVを提案する。
論文 参考訳(メタデータ) (2023-12-13T09:24:42Z) - Towards Efficient 3D Object Detection in Bird's-Eye-View Space for Autonomous Driving: A Convolutional-Only Approach [13.513005108086006]
BEVENetと呼ばれるBEVベースの効率的な3D検出フレームワークを提案する。
BEVENetは、NuScenesチャレンジに対する現代の最先端(SOTA)アプローチよりも3$times$高速である。
実験の結果,BEVENetは現代の最先端(SOTA)アプローチよりも3$times$高速であることがわかった。
論文 参考訳(メタデータ) (2023-12-01T14:52:59Z) - QD-BEV : Quantization-aware View-guided Distillation for Multi-view 3D
Object Detection [57.019527599167255]
BEV (bird-eye-view) に基づく多視点3D検出は、最近大幅に改善されている。
本稿では,BEVタスクに量子化を直接適用することで,トレーニングが不安定になり,性能劣化が許容できないことを示す。
QD-BEVにより,新しいビュー誘導蒸留(VGD)の目標が実現され,QAT(量子化対応トレーニング)の安定化が図られ,モデル性能が向上する。
論文 参考訳(メタデータ) (2023-08-21T07:06:49Z) - Knowledge Distillation from 3D to Bird's-Eye-View for LiDAR Semantic
Segmentation [6.326177388323946]
本研究では,3次元ボクセルモデルからBEVモデルへ豊富な知識を伝達する有効な3D-to-BEV知識蒸留法を開発した。
本フレームワークは,主にボクセル-ピラー蒸留モジュールとラベル-重蒸留モジュールの2つのモジュールから構成される。
ラベル重量の蒸留は、より高い情報を持つ領域により注意を払うのに役立つ。
論文 参考訳(メタデータ) (2023-04-22T13:03:19Z) - MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation [104.12419434114365]
現実世界のアプリケーションでは、センサの破損や故障がパフォーマンスの低下につながります。
極端に現実世界の環境に対処するための,MetaBEVと呼ばれる堅牢なフレームワークを提案する。
MetaBEVは、完全なモダリティと腐敗したモダリティの両方に大きなマージンで、先行技術よりも優れています。
論文 参考訳(メタデータ) (2023-04-19T16:37:17Z) - DiffBEV: Conditional Diffusion Model for Bird's Eye View Perception [14.968177102647783]
そこで我々は,より包括的なBEV表現を生成するために拡散モデルの可能性を活用するために,DiffBEVというエンドツーエンドフレームワークを提案する。
実際に,粗いサンプルを識別し,意味的特徴を洗練する拡散モデルの訓練を指導する3種類の条件を設計する。
DiffBEV が nuScenes データセット上で 25.9% mIoU を達成することを示す。
論文 参考訳(メタデータ) (2023-03-15T02:42:48Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
自律運転におけるLiDARに基づく3Dオブジェクト検出のための,効率的なマスク付きオートエンコーダ事前学習フレームワークであるBEV-MAEを提案する。
具体的には、3Dエンコーダ学習特徴表現を導くために,鳥の目視(BEV)誘導マスキング戦略を提案する。
学習可能なポイントトークンを導入し、3Dエンコーダの一貫性のある受容的フィールドサイズを維持する。
論文 参考訳(メタデータ) (2022-12-12T08:15:03Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
SGM3Dと呼ばれるステレオ誘導単分子物体検出ネットワークを提案する。
ステレオ画像から抽出したロバストな3次元特徴を利用して、モノクル画像から得られた特徴を強化する。
本手法は,余分な計算コストを伴わずに性能を向上させるために,他の多くの単分子的手法に統合することができる。
論文 参考訳(メタデータ) (2021-12-03T13:57:14Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - An LSTM-Based Autonomous Driving Model Using Waymo Open Dataset [7.151393153761375]
本稿では,短期記憶モデル(LSTM)を用いた自律走行モデルの動作を模倣する手法を提案する。
実験結果から,本モデルは動作予測においていくつかのモデルより優れることがわかった。
論文 参考訳(メタデータ) (2020-02-14T05:28:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。