Neural-based Control for CubeSat Docking Maneuvers
- URL: http://arxiv.org/abs/2410.12703v1
- Date: Wed, 16 Oct 2024 16:05:46 GMT
- Title: Neural-based Control for CubeSat Docking Maneuvers
- Authors: Matteo Stoisa, Federica Paganelli Azza, Luca Romanelli, Mattia Varile,
- Abstract summary: This paper presents an innovative approach employing Artificial Neural Networks (ANN) trained through Reinforcement Learning (RL)
The proposed strategy is easily implementable onboard and offers fast adaptability and robustness to disturbances by learning control policies from experience.
Our findings highlight the efficacy of RL in assuring the adaptability and efficiency of spacecraft RVD, offering insights into future mission expectations.
- Score: 0.0
- License:
- Abstract: Autonomous Rendezvous and Docking (RVD) have been extensively studied in recent years, addressing the stringent requirements of spacecraft dynamics variations and the limitations of GNC systems. This paper presents an innovative approach employing Artificial Neural Networks (ANN) trained through Reinforcement Learning (RL) for autonomous spacecraft guidance and control during the final phase of the rendezvous maneuver. The proposed strategy is easily implementable onboard and offers fast adaptability and robustness to disturbances by learning control policies from experience rather than relying on predefined models. Extensive Monte Carlo simulations within a relevant environment are conducted in 6DoF settings to validate our approach, along with hardware tests that demonstrate deployment feasibility. Our findings highlight the efficacy of RL in assuring the adaptability and efficiency of spacecraft RVD, offering insights into future mission expectations.
Related papers
- Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis.
Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities.
This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies.
arXiv Detail & Related papers (2024-09-23T23:02:34Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller.
Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform.
Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle.
arXiv Detail & Related papers (2023-10-17T08:46:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - DikpolaSat Mission: Improvement of Space Flight Performance and Optimal
Control Using Trained Deep Neural Network -- Trajectory Controller for Space
Objects Collision Avoidance [0.0]
This paper shows how the controller demonstration is carried out by having the spacecraft follow a desired path.
The obstacle avoidance algorithm is built into the control features to respond spontaneously using inputs from the neural network.
Multiple algorithms for optimizing flight controls and fuel consumption can be implemented using knowledge of flight dynamics in trajectory.
arXiv Detail & Related papers (2021-05-30T23:35:13Z) - Vision-Based Autonomous Drone Control using Supervised Learning in
Simulation [0.0]
We propose a vision-based control approach using Supervised Learning for autonomous navigation and landing of MAVs in indoor environments.
We trained a Convolutional Neural Network (CNN) that maps low resolution image and sensor input to high-level control commands.
Our approach requires shorter training times than similar Reinforcement Learning approaches and can potentially overcome the limitations of manual data collection faced by comparable Supervised Learning approaches.
arXiv Detail & Related papers (2020-09-09T13:45:41Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.