Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance
- URL: http://arxiv.org/abs/2310.11075v1
- Date: Tue, 17 Oct 2023 08:46:56 GMT
- Title: Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance
- Authors: Thomas Chaffre, Jonathan Wheare, Andrew Lammas, Paulo Santos, Gilles
Le Chenadec, Karl Sammut, Benoit Clement
- Abstract summary: This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller.
Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform.
Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle.
- Score: 1.099532646524593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based adaptive control methods hold the premise of enabling
autonomous agents to reduce the effect of process variations with minimal human
intervention. However, its application to autonomous underwater vehicles (AUVs)
has so far been restricted due to 1) unknown dynamics under the form of sea
current disturbance that we can not model properly nor measure due to limited
sensor capability and 2) the nonlinearity of AUVs tasks where the controller
response at some operating points must be overly conservative in order to
satisfy the specification at other operating points. Deep Reinforcement
Learning (DRL) can alleviates these limitations by training general-purpose
neural network policies, but applications of DRL algorithms to AUVs have been
restricted to simulated environments, due to their inherent high sample
complexity and distribution shift problem. This paper presents a novel
approach, merging the Maximum Entropy Deep Reinforcement Learning framework
with a classic model-based control architecture, to formulate an adaptive
controller. Within this framework, we introduce a Sim-to-Real transfer strategy
comprising the following components: a bio-inspired experience replay
mechanism, an enhanced domain randomisation technique, and an evaluation
protocol executed on a physical platform. Our experimental assessments
demonstrate that this method effectively learns proficient policies from
suboptimal simulated models of the AUV, resulting in control performance 3
times higher when transferred to a real-world vehicle, compared to its
model-based nonadaptive but optimal counterpart.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis.
Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities.
This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies.
arXiv Detail & Related papers (2024-09-23T23:02:34Z) - Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control [0.5437298646956507]
This paper presents a novel approach to Autonomous Vehicle (AV) control through the application of active inference.
Active inference is a theory derived from neuroscience that conceptualizes the brain as a predictive machine.
Our method integrates active inference with deep learning to manage lateral control in AVs, enabling them to perform lane following maneuvers within a simulated urban environment.
arXiv Detail & Related papers (2024-07-10T14:08:27Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
We present a learning-based adaptive control strategy for aerial sliding tasks.
The proposed controller structure combines data-driven and model-based control methods.
Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection.
arXiv Detail & Related papers (2022-06-28T16:28:59Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field.
Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant directly from sensor feedback.
We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework.
arXiv Detail & Related papers (2021-01-29T10:13:56Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.