Counterfactual Generative Modeling with Variational Causal Inference
- URL: http://arxiv.org/abs/2410.12730v1
- Date: Wed, 16 Oct 2024 16:44:12 GMT
- Title: Counterfactual Generative Modeling with Variational Causal Inference
- Authors: Yulun Wu, Louie McConnell, Claudia Iriondo,
- Abstract summary: We present a novel variational Bayesian causal inference framework to handle counterfactual generative modeling tasks.
In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling.
- Score: 1.9287470458589586
- License:
- Abstract: Estimating an individual's potential outcomes under counterfactual treatments is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, facial images) and covariates are relatively limited. In this case, to predict one's outcomes under counterfactual treatments, it is crucial to leverage individual information contained in its high-dimensional observed outcome in addition to the covariates. Prior works using variational inference in counterfactual generative modeling have been focusing on neural adaptations and model variants within the conditional variational autoencoder formulation, which we argue is fundamentally ill-suited to the notion of counterfactual in causal inference. In this work, we present a novel variational Bayesian causal inference framework and its theoretical backings to properly handle counterfactual generative modeling tasks, through which we are able to conduct counterfactual supervision end-to-end during training without any counterfactual samples, and encourage latent disentanglement that aids the correct identification of causal effect in counterfactual generations. In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling on multiple benchmarks.
Related papers
- Counterfactual Generation from Language Models [64.55296662926919]
We show that counterfactual reasoning is conceptually distinct from interventions.
We propose a framework for generating true string counterfactuals.
Our experiments demonstrate that the approach produces meaningful counterfactuals.
arXiv Detail & Related papers (2024-11-11T17:57:30Z) - DiffusionCounterfactuals: Inferring High-dimensional Counterfactuals with Guidance of Causal Representations [18.973047393598346]
We propose a novel framework that incorporates causal mechanisms and diffusion models to generate high-quality counterfactual samples.
Our approach introduces a novel, theoretically grounded training and sampling process that enables the model to consistently generate accurate counterfactual high-dimensional data.
arXiv Detail & Related papers (2024-07-30T05:15:19Z) - VLUCI: Variational Learning of Unobserved Confounders for Counterfactual
Inference [11.191748173380539]
Causal inference plays a vital role in diverse domains like epidemiology, healthcare, and economics.
De-confounding and counterfactual prediction in observational data has emerged as a prominent concern in causal inference research.
We propose a novel variational learning model of unobserved confounders for counterfactual inference.
arXiv Detail & Related papers (2023-08-02T01:44:30Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - How Tempering Fixes Data Augmentation in Bayesian Neural Networks [22.188535244056016]
We show that tempering implicitly reduces the misspecification arising from modeling augmentations as i.i.d. data.
The temperature mimics the role of the effective sample size, reflecting the gain in information provided by the augmentations.
arXiv Detail & Related papers (2022-05-27T11:06:56Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.