DiffusionCounterfactuals: Inferring High-dimensional Counterfactuals with Guidance of Causal Representations
- URL: http://arxiv.org/abs/2407.20553v1
- Date: Tue, 30 Jul 2024 05:15:19 GMT
- Title: DiffusionCounterfactuals: Inferring High-dimensional Counterfactuals with Guidance of Causal Representations
- Authors: Jiageng Zhu, Hanchen Xie, Jiazhi Li, Wael Abd-Almageed,
- Abstract summary: We propose a novel framework that incorporates causal mechanisms and diffusion models to generate high-quality counterfactual samples.
Our approach introduces a novel, theoretically grounded training and sampling process that enables the model to consistently generate accurate counterfactual high-dimensional data.
- Score: 18.973047393598346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of counterfactual outcomes in high-dimensional data is crucial for decision-making and understanding causal relationships and intervention outcomes in various domains, including healthcare, economics, and social sciences. However, existing methods often struggle to generate accurate and consistent counterfactuals, particularly when the causal relationships are complex. We propose a novel framework that incorporates causal mechanisms and diffusion models to generate high-quality counterfactual samples guided by causal representation. Our approach introduces a novel, theoretically grounded training and sampling process that enables the model to consistently generate accurate counterfactual high-dimensional data under multiple intervention steps. Experimental results on various synthetic and real benchmarks demonstrate the proposed approach outperforms state-of-the-art methods in generating accurate and high-quality counterfactuals, using different evaluation metrics.
Related papers
- Counterfactual Generative Modeling with Variational Causal Inference [1.9287470458589586]
We present a novel variational Bayesian causal inference framework to handle counterfactual generative modeling tasks.
In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling.
arXiv Detail & Related papers (2024-10-16T16:44:12Z) - Self-Distilled Disentangled Learning for Counterfactual Prediction [49.84163147971955]
We propose the Self-Distilled Disentanglement framework, known as $SD2$.
Grounded in information theory, it ensures theoretically sound independent disentangled representations without intricate mutual information estimator designs.
Our experiments, conducted on both synthetic and real-world datasets, confirm the effectiveness of our approach.
arXiv Detail & Related papers (2024-06-09T16:58:19Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Mutual Information Estimation via $f$-Divergence and Data Derangements [6.43826005042477]
We propose a novel class of discrimi mutual information estimators based on the variational representation of the $f$-divergence.
The proposed estimator is flexible since it exhibits an excellent bias/ variance trade-off.
arXiv Detail & Related papers (2023-05-31T16:54:25Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
We provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features.
We precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach.
Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies.
arXiv Detail & Related papers (2020-02-24T19:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.